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Integer partitions

If n is a positive integer, then, by a partition λ of n, we mean the
representation

λ : n = λ1 + λ2 + .+ λk , k ≥ 1, (1)

where the positive integers λj satisfy λ1 ≥ λ2 ≥ ... ≥ λk . Let Λ(n)
be the set of all partitions of n and let p(n) = |Λ(n)| (by definition
p(0) = 1 regarding that the one partition of 0 is the empty
partition). Euler has proved the following well known and beautiful
generating function identity for the numbers {p(n)}:

∞
∑

n=0

p(n)xn =
∞
∏

j=1

1

1− x j
:= P(x). (2)
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The number p(n) is determined asymptotically by the famous
partition formula of Hardy and Ramanujan (1918):

p(n) ∼ c0
n
ec1

√
n, c0 =

1

4
√
3
, c1 = π

√

2

3
, n → ∞.

(The proof is based on the Euler’s infinite product identity (2) and
the circle method.) A precise asymptotic expansion for p(n) was
found by Rademacher (1937) (for more details, see also Andrews
(1976); Chapter 5).
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Ferrers diagrams; an example

Each partition λ ∈ Λ(n) has a unique graphical representation
called Ferrers diagram (see, e.g., Andrews (1976); Chaapter 1). It
illustrates partition (1) by the two-dimensional array of dots,
composed by λ1 dots in the first (most left) row, λ2 dots in the
second row,..., and so on, λk dots in the kth row. Therefore, a
Ferrers diagram may be considered as a union of disjoint blocks
(rectangles) of dots whose side lengths represent the part sizes and
their multiplicities of the partition λ, respectively.
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For instance Figure 1 illustrates the partition
7 + 5 + 5 + 5 + 4 + 2 + 1 + 1 + 1 of n = 31:

• • • • • • •
• • • • •
• • • • •
• • • • •
• • • •
• •
•
•
•

Figure 1
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Integer partition statistics

Further on, we assume that, for fixed integer n ≥ 1, a partition
λ ∈ Λ(n) is selected uniformly at random. In other words, we
assign the probability 1/p(n) to each λ ∈ Λ(n). We denote this
probability measure on Λ(n) by P. Let E be the expectation with
respect to P. In this way, each numerical characteristic of λ ∈ Λ(n)
can be regarded as a random variable, or, a statistic produced by
the random generation of partitions of n.
In this work, we focus on two statistics of random integer
partitions λ ∈ Λ(n): Ln = Ln(λ) = λ1, which is the largest part
size in representation (1) and Mn = Mn(λ), equal to the
multiplicity of the largest part λ1 (i.e., Mn(λ) = m, 1 ≤ m ≤ k − 1,
if λ1 = ... = λm > λm+1 ≥ ... ≥ λk in (1), and Mn(λ) = k, if
λ1 = ... = λk). In particular, in Figure 1 L31 = 7,M31 = 1.
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The largest part size Ln

The earliest asymptotic results on random integer partition
statistics have been obtained long ago by Husimi (1938) and Erdös
and Lehner (1941).
Husimi has derived an asymptotic expansion for E(Ln) in the
context of a statistical physics model of a Bose gas.
Erdös and Lehner were apparently the first who have studied
random partition statistics in terms of probabilistic limit theorems.
In fact, they showed that

lim
n→∞

P

(

Ln√
n
− 1

2c
log n ≤ u

)

= H(u), (3)

where

H(u) = exp

(

−1

c
e−cu

)

, c =
π√
6
, −∞ < u < ∞. (4)



On the Largest Part Size and Its Multiplicity of a Random Integer Partition GASCom 2018, Athens, Greece
The largest part size Ln

Later on, Szekeres (1953) has studied in detail the asymptotic
behavior of the number of integer partitions of n whose largest
part is ≤ k and = k in the whole range of values of k = k(n). In
particular, he has obtained Erdös and Lehner’s limit theorem (3)
using an entirely different method of proof.
Husimi’s asymptotic result was subsequently reconfirmed by
Kessler and Livingston (1976). Higher moments of Ln were studied
by Richmond (1974). A general method providing asymptotic
expansions of expectations of integer partition statistics was
recently proposed by Grabner, Knopfmacher and Wagner (2014).
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Among the numerous examples, they derived a rather complete
asymptotic expansion for E(Ln), namely,

E(Ln) =

√
n

2c
(log n + 2γ − 2 log c) +

log n

2c2
+

1

4

+
1 + 2γ − 2 log c

4c2
+ O

(

log n

n

)

, n → ∞, (5)

where c = π/
√
6 and γ = 0.5772... denotes the Euler’s constant

(see Grabner et al. (2014); Proposition 4.2).
We also notice that by conjunction of the Ferrers diagram the
largest part and the total number of parts in a random partition of
n are identically distributed for any n. The sequence
{p(n)E(Ln)}n≥1 is given in the On-line Encyclopedia of Integer
Sequences by N. Sloane as A006128.
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The multiplicity Mn of the largest part

There are serious reasons to believe that the multiplicity Mn of the
largest part of a random partition of n behaves asymptotically in a
much simpler way than many other partition statistics.
Grabner and Knopfmacher (2006) used Erdös-Lehner limit theorem
(3) to establish that

lim
n→∞

E(Mn) = 1. (6)
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In addition, Fristedt (1993) showed that, with probability tending
to 1 as n → ∞, the first mn largest parts in a random partition of
n are distinct if mn = o(n1/4). Hence it may not be that Ln
constitutes the main contribution to n by a single part size and
some smaller part sizes may occur with sufficient multiplicity so
that the products of these part sizes with their multiplicities could
be much larger than Ln. In terms of the Ferrers diagram this
means that its first block has typically smaller area than several
next block areas with larger heights (multiplicities of parts).
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The aim of this study

Our aim in this work is to study the asymptotic behavior of the
area LnMn of the first block in the Ferrers diagram of a random
partition of n. We show some similarities and differences between
the single part size Ln and its corresponding block area LnMn.
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Main results

As a first step, we obtain a distributional result for Mn that
confirms the limit of E(Mn) in (6).
Theorem 1. For any n ≥ 1, we have

P(Mn = 1) =
p(n − 1)

p(n)
.

In addition, if n → ∞, then

P(Mn = 1) = 1− c√
n
+

1 + c2/2

n
+ O(n−3/2),

where c = π/
√
6.
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Combining the Erdös-Lehner limit theorem (3) with Theorem 1
(ii), one can easily observe that the limiting distributions of Ln and
LnMn coincide under the same normalization.
Corollary. For any real u, we have

lim
n→∞

P

(

LnMn√
n

− 1

2c
log n ≤ u

)

= H(u),

where H(u) is the Gumbel’s distribution function given by (4) and
c is the same as in Theorem 1.
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Although Ln and LnMn follow the same limiting distribution, the
difference in means E(LnMn)− E(Ln) grows as fast as

1
2 log n. A

complete estimate is given in the following
Theorem 2. If n → ∞, then, as n → ∞,

E(LnMn) = E(Ln) +
1

2
log n − C + O(1/ log n),

where C = log c + 1− γ = 0.67165... and E(Ln) and c is the same
as in Theorem 1.
Remark 1. The sequence {p(n)E(LnMn)}n≥1 is given as A092321
in the On-line Encyclopedia of Integer Sequences by N. Sloane.
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The method of proof

The proofs of Theorems 1 and 2 are based on generating function
identities established Archibald, Blecher, Brennan, Knopfmacher
and Mansour (2016) that involve products of the form P(x)G (x),
where P(x) is the Euler partition generating function (2) and G (x)
is a function which is analytic in the open unit disk and does not
grow too fast as x → 1. Our asymptotic expansions in Theorems 1
and 2 are obtained using a general asymptotic result of Grabner,
Knopfmacher and Wagner (2014) for the nth coefficient
xn[P(x)G (x)]. For the sake of completeness, we summarize these
results in the following two lemmas. The first one presents the
generating function identities that we need; the second one is the
base for our asymptotic analysis.
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Lemma 1 (Archibald et al. (2016)).
(i) For any positive integer m, we have

∞
∑

n=1

p(n)P(Mn = m)xn = xm
∏

j≥m

(1− x j)−1 = P(x)xm
m−1
∏

j=1

(1− x j).

(ii) We have

∞
∑

n=1

p(n)E(LnMn)x
n = P(x)(F1(x) + F2(x)),

where

F1(x) =
∞
∑

k=1

kxk
∞
∏

j=k+1

(1− x j), (7)

and

F2(x) =
∞
∑

k=1

kx2k

1− xk

∞
∏

j=k+1

(1− x j). (8)
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The next lemma presents two particular cases of a general result
due to Grabner et al. (2014); Theorem 2.3.
Lemma 2. Suppose that, for some constants K > 0 and η < 1,
the function G (x) satisfies

G (x) = O(eK/(1−|x |)η), | x |→ 1. (9)

(i) Let G (e−t) = atb + O(| f (t) |) as t → 0, <t > 0, where b ≥ 0
is an integer and a is real number. Then, as n → ∞, we have

1

p(n)
xn[P(x)G (x)] = a

(

2π√
24n − 1

)b s

s − 1

×
b+1
∑

j=0

(b + j + 1)!

j!(b + j − 1)!

(

− 1

2s

)j

+O(e−2s) + O
(

e−n1/2−ε
+ f (c/

√
n + O(n−1/2−ε))

)
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for any ε ∈ (0, (1− η)/2), where

s =

√

2π2

s

(

n − 1

24

)

= 2c

√

n − 1

24
, c =

π√
6
.

(ii) Suppose that G (x) satisfies condition (9) of part (i) and, for
t = u + iv , let G (e−t) = a log 1

t
+ O(f (| t |)) as t → 0, where

u > 0, v = O(u1+ε) as u → 0+, where ε and a are as in part (i).
Then, as n → ∞, we have

1

p(n)
xn[P(x)G (x)] = a log

(
√
24n − 1

2π

)

+O
(

n−1/2 + f
(

c/
√
n + O(n−1/2−ε)

))

with c as in part (i).
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Important role in the proof of Theorem 2 play the asymptotic
expansions of Fj(e

−t), j = 1, 2 as t → 0. Grabner et al. (2014)
have studied F1(e

−t) using Mellin transform technique. For
F2(e

−t) we are able to prove the following lemma using a classical
summation method of a power series around its main singularity.
Lemma 3. If t = u + iv and u and v satisfy the conditions of
Lemma 2(ii), then

F2(e
−t) = log

1

t
+ γ − 1 + O

(

1/ log
1

t

)

, t → 0.
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Concluding remarks
Erdös and Lehner’s limit theorem (3) and Theorem 1 show that
the weak convergence of both partition statistics Ln and LnMn is
controlled by the leading term in the asymptotic expansions of

their expectations, equal to
√
n

2c log n. Both statistcs, after one and
the same normalization, tend to a Gumbel distributed random
variable. The expectations of Ln and LnMn are, however, different
for large n. In fact, by Theorem 2

lim
n→∞

(

E(LnMn)− E(Ln)−
1

2
log n

)

= −C = −0.67165....

This phenomenon suggests a question related to the typical shape
of a random Ferrers diagram of n. To state the problem in a more

precise way, we denote by X
(k)
n the multiplicity of part k

(k = 1, ..., n) in a random integer partition of n. Let Z
(r)
n be the

rth largest member of the sequence {kX (k)
n }nk=1.
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Erdös and Szalay (1984) showed that Z
(1)
n , appropriately

normalized, tends to a Gumbel distributed random variable.
Fristedt (1993); Theorem 2.7 generalized this result to Z

(r)
n , for

r ≥ 1 fixed, and showed that

lim
n→∞

P

(

c√
n
Z

(r)
n − 1

2
log

n

c2
− log log log n ≤ u

)

=

∫ u

−∞

exp (−e−w − rw)

(r − 1)!
dw , −∞ < u < ∞. (10)

So, it might be interesting to determine the typical position of

LnMn among all ordered areas Z
(r)
n .
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More precisely, if Rn denotes the smallest value of r such that

Z
(r)
n = LnMn, then we conjecture that

E(Rn) � log log n, n → ∞.

This claim is supported by a calculation of the expectation of the
distribution in the right-hand side of (10) demonstrated by Fristedt
(1993); p. 708.
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