On Cyclic Descents

Ron Adin (Bar-Ilan U), Sergi Elizalde (Dartmouth), Victor Reiner (U Minnesota), Yuval Roichman (Bar-Ilan U)

GASCom '18, Athens

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group \mathfrak{S}_n is

 $\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1],$ where $[m] := \{1, 2, \dots, m\}.$

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group \mathfrak{S}_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}.$

The cyclic descent set is defined, with the convention $\pi_{n+1} := \pi_1$, by

$$\mathsf{cDes}(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq [n].$$

The cyclic descent number is defined by $cdes(\pi) := \# cDes(\pi)$.

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group \mathfrak{S}_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}.$

The cyclic descent set is defined, with the convention $\pi_{n+1} := \pi_1$, by

$$\mathsf{cDes}(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq [n].$$

The cyclic descent number is defined by $cdes(\pi) := \# cDes(\pi)$.

Introduced by Cellini ['95];

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group \mathfrak{S}_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}.$

The cyclic descent set is defined, with the convention $\pi_{n+1} := \pi_1$, by

$$\mathsf{cDes}(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq [n].$$

The cyclic descent number is defined by $cdes(\pi) := \# cDes(\pi)$.

Introduced by Cellini ['95]; further studied by Dilks, Petersen and Stembridge ['09] and others.

Cyclic QS

Enumeration

Descents and cyclic descents of permutations

Cyclic QS

Enumeration

Descents and cyclic descents of permutations

Example

 $\pi=$ **23154** :

Cyclic QS

Descents and cyclic descents of permutations

$$\pi = 23154$$
 : $Des(\pi) = \{2, 4\}$,

$$\pi = 23154$$
 : $Des(\pi) = \{2, 4\}$, $cDes(\pi) = \{2, 4, 5\}$.

$$\pi = 23154$$
 : Des $(\pi) = \{2, 4\}$, cDes $(\pi) = \{2, 4, 5\}$.
 $\pi = 34152$:

Descents and cyclic descents of permutations

$$\pi = 23154 : \text{Des}(\pi) = \{2,4\}, \text{ cDes}(\pi) = \{2,4,5\}.$$

$$\pi = 34152 : \text{Des}(\pi) = \{2,4\},$$

$$\pi = 23154 : \text{Des}(\pi) = \{2,4\}, \text{ cDes}(\pi) = \{2,4,5\}.$$

$$\pi = 34152 : \text{Des}(\pi) = \{2,4\}, \text{ cDes}(\pi) = \{2,4\}.$$

Cyclic Shuffles

A shuffle of two permutations with disjoint support $\sigma \in \mathfrak{S}_A$ and $\tau \in \mathfrak{S}_B$ is the set of all permutations in $\mathfrak{S}_{A \sqcup B}$, whose restriction to the letters in A is σ and restriction to the letters in B is τ .

Cyclic Shuffles

A shuffle of two permutations with disjoint support $\sigma \in \mathfrak{S}_A$ and $\tau \in \mathfrak{S}_B$ is the set of all permutations in $\mathfrak{S}_{A \sqcup B}$, whose restriction to the letters in A is σ and restriction to the letters in B is τ . Example 123 \sqcup 4 = {1234, 1243, 1423, 4123}.

Cyclic Shuffles

A shuffle of two permutations with disjoint support $\sigma \in \mathfrak{S}_A$ and $\tau \in \mathfrak{S}_B$ is the set of all permutations in $\mathfrak{S}_{A \sqcup B}$, whose restriction to the letters in A is σ and restriction to the letters in B is τ . Example 123 \sqcup 4 = {1234, 1243, 1423, 4123}.

A cyclic permutation $[a] \in \mathfrak{S}_n/\mathbb{Z}_n$ is an equivalence class of permutations where $a_1, \ldots, a_n \sim a_{i+1} \ldots, a_n, a_1, \ldots, a_i$.

Cyclic Shuffles

A shuffle of two permutations with disjoint support $\sigma \in \mathfrak{S}_A$ and $\tau \in \mathfrak{S}_B$ is the set of all permutations in $\mathfrak{S}_{A \sqcup B}$, whose restriction to the letters in A is σ and restriction to the letters in B is τ . Example 123 $\amalg 4 = \{1234, 1243, 1423, 4123\}.$

A cyclic permutation $[a] \in \mathfrak{S}_n/\mathbb{Z}_n$ is an equivalence class of permutations where $a_1, \ldots, a_n \sim a_{i+1} \ldots, a_n, a_1, \ldots, a_i$.

A cyclic shuffle of two cyclic permutations [a] and [b] with disjoint support is the equivalence class of shuffles of representatives of [a] and [b].

Cyclic Shuffles

A shuffle of two permutations with disjoint support $\sigma \in \mathfrak{S}_A$ and $\tau \in \mathfrak{S}_B$ is the set of all permutations in $\mathfrak{S}_{A \sqcup B}$, whose restriction to the letters in A is σ and restriction to the letters in B is τ . Example 123 \sqcup 4 = {1234, 1243, 1423, 4123}.

A cyclic permutation $[a] \in \mathfrak{S}_n/\mathbb{Z}_n$ is an equivalence class of permutations where $a_1, \ldots, a_n \sim a_{i+1} \ldots, a_n, a_1, \ldots, a_i$.

A cyclic shuffle of two cyclic permutations [a] and [b] with disjoint support is the equivalence class of shuffles of representatives of [a] and [b].

Example [123] \sqcup_{cyc} [4] = {[1234], [1243], [1423]}.

Cyclic QS

Enumeration

Cyclic Shuffles

Example [316] ⊔_{cyc} [254]

Enumeration

Cyclic Shuffles

Example [316] ⊔⊔_{cyc} [254]

Enumeration

Cyclic Shuffles

Example [316] ⊔⊔_{cyc} [254]

What is the distribution of cyclic descents over cyclic shuffles ?

 $SYT(\lambda)$ denotes the set of all standard Young tableaux of shape λ .

Descents and cyclic descents of SYT

 $SYT(\lambda)$ denotes the set of all standard Young tableaux of shape λ .

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

 $SYT(\lambda)$ denotes the set of all standard Young tableaux of shape λ .

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

$$T = \boxed{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \end{array}} \in \mathsf{SYT}(3, 2, 1)$$

 $SYT(\lambda)$ denotes the set of all standard Young tableaux of shape λ .

The descent set of a standard Young tableau T is

 $\mathsf{Des}(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

$$T = \boxed{\begin{array}{c} 1 & 2 & 4 \\ 3 & 6 \\ 5 \\ \end{array}} \in SYT(3, 2, 1)$$
$$Des(T) = \{2, 4\}.$$

 $SYT(\lambda)$ denotes the set of all standard Young tableaux of shape λ .

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \boxed{\begin{array}{c} 1 & 2 & 4 \\ 3 & 6 \\ 5 \\ \end{array}} \in SYT(3, 2, 1)$$

$$Des(T) = \{2, 4\}.$$

Problem 2:

Define a cyclic descent set for SYT of any shape λ .

Cyclic descent extension

Cyclic descent extension

Definition Given a set \mathcal{T} and map Des : $\mathcal{T}
ightarrow 2^{[n-1]}$,

Cyclic descent extension

Definition

Given a set \mathcal{T} and map $\mathsf{Des}:\mathcal{T}\to 2^{[n-1]}$, a cyclic extension of Des

Cyclic descent extension

Definition

Given a set \mathcal{T} and map $\text{Des} : \mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des is a pair (cDes, p), where cDes : $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p : \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms:

Cyclic descent extension

Definition

Given a set \mathcal{T} and map Des : $\mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des is a pair (cDes, p), where cDes : $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p : \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms: for all \mathcal{T} in \mathcal{T} ,

 $\begin{array}{ll} (\text{extension}) & \text{cDes}(T) \cap [n-1] = \text{Des}(T), \\ (\text{equivariance}) & \text{cDes}(p(T)) = p(\text{cDes}(T)), \\ (\text{non-Escher}) & \varnothing \subsetneq \text{cDes}(T) \subsetneq [n]. \end{array}$

Cyclic descent extension

Definition

Given a set \mathcal{T} and map Des : $\mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des is a pair (cDes, p), where cDes : $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p : \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms: for all \mathcal{T} in \mathcal{T} ,

$$\begin{array}{ll} (\text{extension}) & \text{cDes}(T) \cap [n-1] = \text{Des}(T), \\ (\text{equivariance}) & \text{cDes}(p(T)) = p(\text{cDes}(T)), \\ (\text{non-Escher}) & \varnothing \subsetneq \text{cDes}(T) \subsetneq [n]. \end{array}$$

- $\mathcal{T} = \mathfrak{S}_n$, with Cellini's cyclic descent set and \mathbb{Z}_n -action by cyclic rotation.
- $T = SYT(r^{n/r})$, with Rhoades' cyclic descent set and \mathbb{Z}_n -action by promotion.

Cyclic QS

Enumeration

A non-Escher property

"Ascending and Descending", M. C. Escher

Cyclic QS

Enumeration

A non-Escher property

"Ascending and Descending", M. C. Escher The paradox of $cDes(\pi) = \emptyset$ and $cDes(\pi) = [n]$.

Special shapes

Theorem (Adin-Elizalde-R '16)

Each of the following shapes carries a cyclic descent extension:

Special shapes

Theorem (Adin-Elizalde-R '16)

Each of the following shapes carries a cyclic descent extension:

(hook plus one box)

Theorem (Adin-Elizalde-R '16)

Each of the following shapes carries a cyclic descent extension:

(hook plus one box)

(two rows).

Theorem (Adin-Elizalde-R '16)

Each of the following shapes carries a cyclic descent extension:

The proofs are explicit and combinatorial.

Special shapes

Explicit definitions of cDes maps

Theorem (AER '16)

The shape $(n - k, 2, 1^{k-2})$ has a unique cyclic descent map. For $T \in SYT(n - k, 2, 1^{k-2})$, let $n \in cDes(T)$ if and only if $T_{2,2} - 1$ appears in the first column of T.

Special shapes

Explicit definitions of cDes maps

Theorem (AER '16) The shape $(n - k, 2, 1^{k-2})$ has a unique cyclic descent map. For $T \in SYT(n - k, 2, 1^{k-2})$, let $n \in cDes(T)$ if and only if $T_{2,2} - 1$ appears in the first column of T.

Example The only cyclic descent map for $\lambda = (3, 2)$ is given by

Theorem (AER '16)

There exists a cyclic descent map for the shape (n - k, k). For $T \in SYT(n - k, k)$, let $n \in cDes(T)$ if and only if both conditions hold:

- 1. the last two entries in the second row of T are consecutive, that is, $T_{2,k} = T_{2,k-1} + 1$;
- 2. for every 1 < i < k, $T_{2,i-1} > T_{1,i}$.

Theorem (AER '16)

There exists a cyclic descent map for the shape (n - k, k). For $T \in SYT(n - k, k)$, let $n \in cDes(T)$ if and only if both conditions hold:

- 1. the last two entries in the second row of T are consecutive, that is, $T_{2,k} = T_{2,k-1} + 1$;
- 2. for every 1 < i < k, $T_{2,i-1} > T_{1,i}$.

Corollary (AER '17) For any $2 \le k \le n/2$

$$\sum_{T \in SYT(n-k,k)} q^{cdes(T)}$$

= $\sum_{d=1}^{k} \frac{n}{d} \left[\binom{k-1}{d-1} \binom{n-k-1}{d-1} - \binom{k-2}{d-1} \binom{n-k}{d-1} \right] q^{d}.$

General shapes

Theorem (Adin-Reiner-Roichman '17)

 For every non-hook partition λ ⊢ n there exists a cyclic descent extension;

General shapes

Theorem (Adin-Reiner-Roichman '17)

 For every non-hook partition λ ⊢ n there exists a cyclic descent extension; namely, ∃ cDes : SYT(λ/μ) → 2^[n] and p : SYT(λ/μ) → SYT(λ/μ), s.t. ∀ T ∈ in SYT(λ)

 $\begin{array}{ll} (extension) & cDes(T) \cap [n-1] = Des(T), \\ (equivariance) & cDes(p(T)) = p(cDes(T)), \\ (non-Escher) & \varnothing \subsetneq cDes(T) \subsetneq [n]. \end{array}$

General shapes

Theorem (Adin-Reiner-Roichman '17)

 For every non-hook partition λ ⊢ n there exists a cyclic descent extension; namely, ∃ cDes : SYT(λ/μ) → 2^[n] and p : SYT(λ/μ) → SYT(λ/μ), s.t. ∀ T ∈ in SYT(λ)

$$\begin{array}{ll} (extension) & cDes(T) \cap [n-1] = Des(T), \\ (equivariance) & cDes(p(T)) = p(cDes(T)), \\ (non-Escher) & \varnothing \subsetneq cDes(T) \subsetneq [n]. \end{array}$$

2. If λ is not a hook then for all cyclic descent extensions, the distribution of cDes over SYT(λ) is uniquely determined.

Quasi-symmetric functions

Definition A quasi-symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ such that, for any $t \ge 1$, any two increasing sequences $i_1 < \ldots < i_t$ and $j_1 < \ldots < j_t$ of positive integers, any sequence $m = (m_1, \ldots, m_t)$ of positive integers, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{j_1}^{m_1} \cdots x_{j_t}^{m_t}$ in f are equal.

Definition A quasi-symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ such that, for any $t \ge 1$, any two increasing sequences $i_1 < \ldots < i_t$ and $j_1 < \ldots < j_t$ of positive integers, any sequence $m = (m_1, \ldots, m_t)$ of positive integers, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{j_1}^{m_1} \cdots x_{j_t}^{m_t}$ in f are equal.

Denote the sets of quasi-symmetric (symmetric) functions of degree n by $QSym_n$ (Sym_n).

Quasi-symmetric functions

Definition A quasi-symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ such that, for any $t \ge 1$, any two increasing sequences $i_1 < \ldots < i_t$ and $j_1 < \ldots < j_t$ of positive integers, any sequence $m = (m_1, \ldots, m_t)$ of positive integers, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{j_1}^{m_1} \cdots x_{j_t}^{m_t}$ in f are equal.

Denote the sets of quasi-symmetric (symmetric) functions of degree n by $QSym_n$ (Sym_n).

Example $\sum_{i < j < k} x_i^2 x_j x_k^3 \notin Sym_6$

Quasi-symmetric functions

Definition A quasi-symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ such that, for any $t \ge 1$, any two increasing sequences $i_1 < \ldots < i_t$ and $j_1 < \ldots < j_t$ of positive integers, any sequence $m = (m_1, \ldots, m_t)$ of positive integers, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{j_1}^{m_1} \cdots x_{j_t}^{m_t}$ in f are equal.

Denote the sets of quasi-symmetric (symmetric) functions of degree n by $QSym_n$ (Sym_n).

Example
$$\sum_{i < j < k} x_i^2 x_j x_k^3 \notin Sym_6$$
 but $\sum_{i < j < k} x_i^2 x_j x_k^3 \in QSym_6$.

Definition A quasi-symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ such that, for any $t \ge 1$, any two increasing sequences $i_1 < \ldots < i_t$ and $j_1 < \ldots < j_t$ of positive integers, any sequence $m = (m_1, \ldots, m_t)$ of positive integers, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{j_1}^{m_1} \cdots x_{j_t}^{m_t}$ in f are equal.

Denote the sets of quasi-symmetric (symmetric) functions of degree n by $QSym_n$ (Sym_n).

Example
$$\sum_{i < j < k} x_i^2 x_j x_k^3 \notin Sym_6$$
 but $\sum_{i < j < k} x_i^2 x_j x_k^3 \in QSym_6$.

Observation

$$Sym_n \subseteq QSym_n$$
.

Recall the Schur function basis for Sym_n , $\{s_{\lambda} : \lambda \vdash n\}$.

Recall the Schur function basis for Sym_n , $\{s_{\lambda} : \lambda \vdash n\}$.

Definition Given a subset $J \subseteq [n]$ define the fundamental quasi-symmetric function

$$\mathcal{F}_{n,J} := \sum_{\substack{w_i \leq w_{i+1} \\ w_i < w_{i+1} \quad \forall i \in J}} x_{w_1} x_{w_2} \cdots x_{w_n}.$$

Recall the Schur function basis for Sym_n , $\{s_{\lambda} : \lambda \vdash n\}$.

Definition Given a subset $J \subseteq [n]$ define the fundamental quasi-symmetric function

$$\mathcal{F}_{n,J} := \sum_{\substack{w_i \leq w_{i+1} \\ w_i < w_{i+1} \quad \forall i \in J}} x_{w_1} x_{w_2} \cdots x_{w_n}.$$

Theorem (Gessel '84)

1. $\{F_{n,J}: J \subseteq [n-1]\}$ is a basis of $QSym_n$.

Recall the Schur function basis for Sym_n , $\{s_{\lambda} : \lambda \vdash n\}$.

Definition Given a subset $J \subseteq [n]$ define the fundamental quasi-symmetric function

$$F_{n,J} := \sum_{\substack{w_i \le w_{i+1} \ w_i < w_{i+1} \ \forall i \in J}} x_{w_1} x_{w_2} \cdots x_{w_n}.$$

Theorem (Gessel '84)

- 1. $\{F_{n,J}: J \subseteq [n-1]\}$ is a basis of $QSym_n$.
- 2. For every partition $\lambda \vdash n$

$$\operatorname{coeff}_{F_{n,J}}(s_{\lambda}) = \#\{T \in \operatorname{SYT}(\lambda) : \operatorname{Des}(T) = J\}.$$

Definition A cyclic quasi-symmetric function is $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ s.t. for any $t \ge 1$, $i_1 < \ldots < i_t$ and $j_1 < \ldots < j_t$, $m = (m_1, \ldots, m_t) \in \mathbb{N}^t$ and $d \in \mathbb{Z}_t$, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{j_1}^{m_{d+1}} \cdots x_{j_t}^{m_{d+t}}$ in f are equal.

Definition A cyclic quasi-symmetric function is $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ s.t. for any $t \ge 1$, $i_1 < \ldots < i_t$ and $j_1 < \ldots < j_t$, $m = (m_1, \ldots, m_t) \in \mathbb{N}^t$ and $d \in \mathbb{Z}_t$, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{j_1}^{m_{d+1}} \cdots x_{j_t}^{m_{d+t}}$ in f are equal.

Example
$$\sum_{i < j < k} x_i^2 x_j x_k^3 \notin cQSym_6$$

Definition A cyclic quasi-symmetric function is $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ s.t. for any $t \ge 1$, $i_1 < \ldots < i_t$ and $j_1 < \ldots < j_t$, $m = (m_1, \ldots, m_t) \in \mathbb{N}^t$ and $d \in \mathbb{Z}_t$, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{j_1}^{m_{d+1}} \cdots x_{j_t}^{m_{d+t}}$ in f are equal.

Example
$$\sum_{i < j < k} x_i^2 x_j x_k^3 \notin cQSym_6$$
 but $\sum_{\substack{i < j < k \\ \text{or } j < k < i \\ k < i}} x_i^2 x_j x_k^3 \in cQSym_6.$

Definition A cyclic quasi-symmetric function is $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ s.t. for any $t \ge 1$, $i_1 < \ldots < i_t$ and $j_1 < \ldots < j_t$, $m = (m_1, \ldots, m_t) \in \mathbb{N}^t$ and $d \in \mathbb{Z}_t$, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{j_1}^{m_{d+1}} \cdots x_{j_t}^{m_{d+t}}$ in f are equal.

Example
$$\sum_{i < j < k} x_i^2 x_j x_k^3 \notin cQSym_6$$
 but $\sum_{\substack{i < j < k \\ \text{or } j < k < i \\ \text{or } k < i < j}} x_i^2 x_j x_k^3 \in cQSym_6.$

Observation cQSym is a graded ring, satisfying

 $Sym \subseteq cQSym \subseteq QSym.$

Definition A cyclic quasi-symmetric function is $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ s.t. for any $t \ge 1$, $i_1 < \ldots < i_t$ and $j_1 < \ldots < j_t$, $m = (m_1, \ldots, m_t) \in \mathbb{N}^t$ and $d \in \mathbb{Z}_t$, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{j_1}^{m_{d+1}} \cdots x_{j_t}^{m_{d+t}}$ in f are equal.

Example
$$\sum_{i < j < k} x_i^2 x_j x_k^3 \notin cQSym_6$$
 but $\sum_{\substack{i < j < k \\ \text{or } j < k < i \\ \text{or } k < i < j}} x_i^2 x_j x_k^3 \in cQSym_6.$

Observation cQSym is a graded ring, satisfying

$$Sym \subseteq cQSym \subseteq QSym.$$

Problem 3:

Find a cyclic analogue of $F_{n,J}$, which satisfies

$$\operatorname{coeff}_{F_{n,J}^{\operatorname{cyc}}}(s_{\lambda}) \geq 0 \qquad (\forall \lambda \vdash n, J \subseteq [n]).$$

Permutations and cyclic shuffles

Results

Cyclic *P*-partitions

Definition Given a subset $\emptyset \neq J \subseteq [n]$ define the set of cyclic *P*-partitions $P_{n,J}^{\text{cyc}}$

Definition Given a subset $\emptyset \neq J \subseteq [n]$ define the set of cyclic *P*-partitions $P_{n,J}^{\text{cyc}}$ as the set of words, $w = w_1, \ldots, w_n$, whose letters are positive integers, such that

Definition Given a subset $\emptyset \neq J \subseteq [n]$ define the set of cyclic *P*-partitions $P_{n,J}^{\text{cyc}}$ as the set of words, $w = w_1, \ldots, w_n$, whose letters are positive integers, such that

1. The letters in w when put on a circle respect the clockwise cyclic orientation ;

Definition Given a subset $\emptyset \neq J \subseteq [n]$ define the set of cyclic *P*-partitions $P_{n,J}^{\text{cyc}}$ as the set of words, $w = w_1, \ldots, w_n$, whose letters are positive integers, such that

- 1. The letters in w when put on a circle respect the clockwise cyclic orientation ;
- 2. For every $i \in [n]$, if $i \in J$ then $w_i \neq w_{i+1 \mod n}$.

Definition Given a subset $\emptyset \neq J \subseteq [n]$ define the set of cyclic *P*-partitions $P_{n,J}^{\text{cyc}}$ as the set of words, $w = w_1, \ldots, w_n$, whose letters are positive integers, such that

- 1. The letters in *w* when put on a circle respect the clockwise cyclic orientation ;
- 2. For every $i \in [n]$, if $i \in J$ then $w_i \neq w_{i+1 \mod n}$.

Example

Let n = 5 and $J = \{1, 3\}$.

$$\mathcal{F}_{n,J}^{cyc} := \sum_{w \in \mathcal{P}_{n,J}^{cyc}} x_{w_1} x_{w_2} \cdots x_{w_n}.$$

$$F_{n,J}^{\mathsf{cyc}} := \sum_{w \in P_{n,J}^{\mathsf{cyc}}} x_{w_1} x_{w_2} \cdots x_{w_n}.$$

Prop. { $F_{n,J}^{cyc}$: $\emptyset \subsetneq J \subseteq [n]$ }, where J runs over representatives of the \mathbb{Z}_n -action on $2^{[n]}$ by cyclic shifts, is a basis of $cQSym_n$.

$$F_{n,J}^{\operatorname{cyc}} := \sum_{w \in P_{n,J}^{\operatorname{cyc}}} x_{w_1} x_{w_2} \cdots x_{w_n}.$$

Prop. { $F_{n,J}^{cyc}$: $\varnothing \subsetneq J \subseteq [n]$ }, where J runs over representatives of the \mathbb{Z}_n -action on $2^{[n]}$ by cyclic shifts, is a basis of $cQSym_n$.

Theorem (Adin-Gessel-Reiner-R '18) For every non-hook partition $\lambda \vdash n$ and $\emptyset \subsetneq J \subsetneq [n]$

 $\operatorname{coeff}_{\mathcal{F}_{n,J}^{\operatorname{cyc}}}(s_{\lambda}) \geq 0.$

$$\mathcal{F}_{n,J}^{\mathsf{cyc}} := \sum_{w \in P_{n,J}^{\mathsf{cyc}}} x_{w_1} x_{w_2} \cdots x_{w_n}.$$

Prop. { $F_{n,J}^{cyc}$: $\emptyset \subsetneq J \subseteq [n]$ }, where J runs over representatives of the \mathbb{Z}_n -action on $2^{[n]}$ by cyclic shifts, is a basis of $cQSym_n$.

Theorem (Adin-Gessel-Reiner-R '18) For every non-hook partition $\lambda \vdash n$ and $\emptyset \subsetneq J \subsetneq [n]$

$$\operatorname{coeff}_{\mathcal{F}_{n,J}^{\operatorname{cyc}}}(s_{\lambda}) \geq 0.$$

Proof Idea: Apply the existence of a map cDes : $SYT(\lambda) \longrightarrow 2^{[n]}$, which statisfies cyclic descent extension axioms, to show that

$$rac{1}{n}\sum_{T\in {
m SYT}(\lambda/\mu)}F^{
m cyc}_{n,{
m cDes}(T)}=s_{\lambda/\mu}.$$

Structure constants and equi-distribution

Structure Constants Theorem (AGRR '18) Given a set partition $[n + m] = A \sqcup B$ with |A| = m and |B| = n, $\sigma \in \mathfrak{S}_A$ and $\tau \in \mathfrak{S}_B$, the following expansion holds

$$F_{n,cDes(\sigma)}^{cyc} \cdot F_{m,cDes(\tau)}^{cyc} =$$

Structure constants and equi-distribution

Structure Constants Theorem (AGRR '18) Given a set partition $[n + m] = A \sqcup B$ with |A| = m and |B| = n, $\sigma \in \mathfrak{S}_A$ and $\tau \in \mathfrak{S}_B$, the following expansion holds

$$\mathcal{F}_{n, ext{cDes}(\sigma)}^{ ext{cyc}} \cdot \mathcal{F}_{m, ext{cDes}(au)}^{ ext{cyc}} = \sum_{[w] \in [\sigma] \sqcup_{ ext{cyc}}[au]} \mathcal{F}_{n, ext{cDes}(w)}^{ ext{cyc}}$$

Structure constants and equi-distribution

Structure Constants Theorem (AGRR '18) Given a set partition $[n + m] = A \sqcup B$ with |A| = m and |B| = n, $\sigma \in \mathfrak{S}_A$ and $\tau \in \mathfrak{S}_B$, the following expansion holds

$$F_{n, ext{cDes}(\sigma)}^{ ext{cyc}} \cdot F_{m, ext{cDes}(au)}^{ ext{cyc}} = \sum_{[w] \in [\sigma] \sqcup_{ ext{cyc}}[au]} F_{n, ext{cDes}(w)}^{ ext{cyc}}$$

Corollary (AGRR '18)

Given two permutations σ and τ of disjoint sets of integers, the distribution of the cyclic descent set over all cyclic shuffles of $[\sigma]$ and $[\tau]$ depends only on cDes($[\sigma]$) and cDes($[\tau]$).
Distribution of cyclic descents over cyclic shuffles

Theorem (AGRR '18)

Given a set partition $[n + m] = A \sqcup B$ with |A| = m and |B| = n, $\sigma \in \mathfrak{S}_A$ and $\tau \in \mathfrak{S}_B$, the number of cyclic shuffles of $[\sigma]$ and $[\tau]$ with cyclic descent number k is equal to

$$(m-i)\binom{m+j-i-1}{k-i-1}\binom{n+i-j}{k-j}+i\binom{m+j-i}{k-i}\binom{n+i-j-1}{k-j},$$

where $i = cdes(\sigma)$ and $j = cdes(\tau)$.

Distribution of cyclic descents over cyclic shuffles

Theorem (AGRR '18)

Given a set partition $[n + m] = A \sqcup B$ with |A| = m and |B| = n, $\sigma \in \mathfrak{S}_A$ and $\tau \in \mathfrak{S}_B$, the number of cyclic shuffles of $[\sigma]$ and $[\tau]$ with cyclic descent number k is equal to

$$(m-i)\binom{m+j-i-1}{k-i-1}\binom{n+i-j}{k-j}+i\binom{m+j-i}{k-i}\binom{n+i-j-1}{k-j},$$

where $i = cdes(\sigma)$ and $j = cdes(\tau)$.

Proof idea: Apply a ring homomorphism from $\mathbb{Z}[[x_1, x_2, \ldots]]$ to $\mathbb{Z}[[q]]_{\odot}$ on Structure Constants Theorem,

Distribution of cyclic descents over cyclic shuffles

Theorem (AGRR '18)

Given a set partition $[n + m] = A \sqcup B$ with |A| = m and |B| = n, $\sigma \in \mathfrak{S}_A$ and $\tau \in \mathfrak{S}_B$, the number of cyclic shuffles of $[\sigma]$ and $[\tau]$ with cyclic descent number k is equal to

$$(m-i)\binom{m+j-i-1}{k-i-1}\binom{n+i-j}{k-j}+i\binom{m+j-i}{k-i}\binom{n+i-j-1}{k-j},$$

where $i = cdes(\sigma)$ and $j = cdes(\tau)$.

Proof idea: Apply a ring homomorphism from $\mathbb{Z}[[x_1, x_2, \ldots]]$ to $\mathbb{Z}[[q]]_{\odot}$ on Structure Constants Theorem, where $\mathbb{Z}[[q]]_{\odot}$ is defined by equipping $\mathbb{Z}[[q]]$ with the product

$$q^i \odot q^j := q^{\max(i,j)}.$$

Permutations and cyclic shuffles

SYT

Results

Cyclic QSI

Enumeration

Thank You and

Permutations and cyclic shuffles

SYT

Results

Cyclic QS

Enumeration

Thank You and

 $\alpha\nu\tau\iota o$!