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Permutations and cyclic shuffles SYT Results Cyclic QSF Enumeration

Descents and cyclic descents of permutations

The descent set of a permutation π = (π1, . . . , πn) in the
symmetric group Sn is

Des(π) := {1 ≤ i ≤ n − 1 : πi > πi+1} ⊆ [n − 1],

where [m] := {1, 2, . . . ,m}.

The cyclic descent set is defined, with the convention πn+1 := π1,
by

cDes(π) := {1 ≤ i ≤ n : πi > πi+1} ⊆ [n].

The cyclic descent number is defined by cdes(π) := # cDes(π).

Introduced by Cellini [’95]; further studied by Dilks, Petersen and
Stembridge [’09] and others.
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Descents and cyclic descents of permutations

Example

π = 23154 : Des(π) = {2, 4} , cDes(π) = {2, 4, 5}.
π = 34152 : Des(π) = {2, 4} , cDes(π) = {2, 4}.
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Descents and cyclic descents of permutations

Example
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Cyclic Shuffles

A shuffle of two permutations with disjoint support σ ∈ SA and
τ ∈ SB is the set of all permutations in SAtB , whose restriction
to the letters in A is σ and restriction to the letters in B is τ .

Example 123� 4 = {1234, 1243, 1423, 4123}.

A cyclic permutation [a] ∈ Sn/Zn is an equivalence class of
permutations where a1, . . . , an ∼ ai+1 . . . , an, a1, . . . , ai .

A cyclic shuffle of two cyclic permutations [a] and [b] with disjoint
support is the equivalence class of shuffles of representatives of [a]
and [b].

Example [123]�cyc [4] = {[1234], [1243], [1423]}.
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Cyclic Shuffles
Example [316]�cyc [254]
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Problem 1:

What is the distribution of cyclic descents over cyclic shuffles ?
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Descents and cyclic descents of SYT

SYT(λ) denotes the set of all standard Young tableaux of shape λ.

The descent set of a standard Young tableau T is

Des(T ) := {i : i + 1 is in a lower row than i}.

Example

T =
1 2 4
3 6
5

∈ SYT(3, 2, 1)

Des(T ) = {2, 4}.

Problem 2:

Define a cyclic descent set for SYT of any shape λ.
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Cyclic descent extension

Definition
Given a set T and map Des : T → 2[n−1], a cyclic extension of Des
is a pair (cDes, p), where cDes : T −→ 2[n] is a map and
p : T −→ T is a bijection, satisfying the following axioms:
for all T in T ,

(extension) cDes(T ) ∩ [n − 1] = Des(T ),
(equivariance) cDes(p(T )) = p(cDes(T )),

(non-Escher) ∅ ( cDes(T ) ( [n].

Examples

• T = Sn, with Cellini’s cyclic descent set and Zn-action by
cyclic rotation.

• T = SYT(rn/r ), with Rhoades’ cyclic descent set and
Zn-action by promotion.
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A non-Escher property

“Ascending and Descending”, M. C. Escher

The paradox of cDes(π) = ∅ and cDes(π) = [n].
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Special shapes

Theorem (Adin-Elizalde-R ’16)

Each of the following shapes carries a cyclic descent extension:

(hook plus one box)

(two rows).

The proofs are explicit and combinatorial.
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Special shapes

Explicit definitions of cDes maps

Theorem (AER ’16)

The shape (n − k , 2, 1k−2) has a unique cyclic descent map. For
T ∈ SYT(n − k , 2, 1k−2), let n ∈ cDes(T ) if and only if T2,2 − 1
appears in the first column of T .

Example The only cyclic descent map for λ = (3, 2) is given by

1 3 4
2 5

, 1 2 5
3 4

1 3 5
2 4

, 1 2 4
3 5

, 1 2 3
4 5

.

{1, 4} {2, 5} {3, 1} {4, 2} {5, 3}
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Theorem ( AER ’16)

There exists a cyclic descent map for the shape (n − k, k). For
T ∈ SYT(n − k , k), let n ∈ cDes(T ) if and only if both conditions
hold:

1. the last two entries in the second row of T are consecutive,
that is, T2,k = T2,k−1 + 1;

2. for every 1 < i < k, T2,i−1 > T1,i .

Corollary (AER ’17)

For any 2 ≤ k ≤ n/2∑
T∈SYT(n−k,k)

qcdes(T )

=
k∑

d=1

n

d

[(
k − 1

d − 1

)(
n − k − 1

d − 1

)
−
(

k − 2

d − 1

)(
n − k

d − 1

)]
qd .
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General shapes

Theorem (Adin-Reiner-Roichman ’17)

1. For every non-hook partition λ ` n there exists a cyclic
descent extension;

namely,
∃ cDes : SYT(λ/µ) −→ 2[n] and
p : SYT(λ/µ) −→ SYT(λ/µ), s.t. ∀ T ∈ in SYT(λ)

(extension) cDes(T ) ∩ [n − 1] = Des(T ),
(equivariance) cDes(p(T )) = p(cDes(T )),

(non-Escher) ∅ ( cDes(T ) ( [n].

2. If λ is not a hook then for all cyclic descent extensions, the
distribution of cDes over SYT(λ) is uniquely determined.
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Quasi-symmetric functions

Definition A quasi-symmetric function is a formal power series
f ∈ Z[[x1, x2, . . .]] such that, for any t ≥ 1, any two increasing
sequences i1 < . . . < it and j1 < . . . < jt of positive integers, any
sequence m = (m1, . . . ,mt) of positive integers, the coefficients of
xm1
i1
· · · xmt

it
and xm1

j1
· · · xmt

jt
in f are equal.

Denote the sets of quasi-symmetric (symmetric) functions of
degree n by QSymn (Symn).

Example
∑

i<j<k

x2
i xjx

3
k 6∈ Sym6 but

∑
i<j<k

x2
i xjx

3
k ∈ QSym6.

Observation
Symn ⊆ QSymn.
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sequence m = (m1, . . . ,mt) of positive integers, the coefficients of
xm1
i1
· · · xmt

it
and xm1

j1
· · · xmt

jt
in f are equal.

Denote the sets of quasi-symmetric (symmetric) functions of
degree n by QSymn (Symn).

Example
∑

i<j<k

x2
i xjx

3
k 6∈ Sym6 but

∑
i<j<k

x2
i xjx

3
k ∈ QSym6.

Observation
Symn ⊆ QSymn.
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Quasi-symmetric functions

Recall the Schur function basis for Symn, {sλ : λ ` n}.

Definition Given a subset J ⊆ [n] define the fundamental
quasi-symmetric function

Fn,J :=
∑

wi≤wi+1
wi<wi+1 ∀i∈J

xw1xw2 · · · xwn .

Theorem (Gessel ’84)

1. {Fn,J : J ⊆ [n − 1]} is a basis of QSymn.

2. For every partition λ ` n

coeffFn,J
(sλ) = #{T ∈ SYT(λ) : Des(T ) = J}.
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Cyclic quasi-symmetric functions
Definition A cyclic quasi-symmetric function is f ∈ Z[[x1, x2, . . .]]
s.t. for any t ≥ 1, i1 < . . . < it and j1 < . . . < jt ,
m = (m1, . . . ,mt) ∈ Nt and d ∈ Zt ,
the coefficients of xm1

i1
· · · xmt

it
and x

md+1

j1
· · · xmd+t

jt
in f are equal.

Example
∑

i<j<k

x2
i xjx

3
k 6∈ cQSym6 but

∑
i<j<k

or j<k<i
or k<i<j

x2
i xjx

3
k ∈ cQSym6.

Observation cQSym is a graded ring, satisfying

Sym ⊆ cQSym ⊆ QSym.

Problem 3:

Find a cyclic analogue of Fn,J , which satisfies

coeffF cyc
n,J

(sλ) ≥ 0 (∀λ ` n, J ⊆ [n]).
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Cyclic P-partitions
Definition Given a subset ∅ 6= J ⊆ [n] define the set of
cyclic P-partitions Pcyc

n,J

as the set of words , w = w1, . . . ,wn,
whose letters are positive integers, such that

1. The letters in w when put on a circle respect the clockwise
cyclic orientation ;

2. For every i ∈ [n], if i ∈ J then wi 6= wi+1 mod n.

Example

Let n = 5 and J = {1, 3}.

1

2

3
4

5

∧

2

3

3
1

2

∧

2

3

1
2

2

∧

*
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Definition Given a subset ∅ ( J = {j1 < j2 < . . . < jt} ⊆ [n]
define the cyclic fundamental quasi-symmetric function

F cyc
n,J :=

∑
w∈Pcyc

n,J

xw1xw2 · · · xwn .

Prop. {F cyc
n,J : ∅ ( J ⊆ [n]}, where J runs over representatives of

the Zn-action on 2[n] by cyclic shifts, is a basis of cQSymn.

Theorem (Adin-Gessel-Reiner-R ’18)

For every non-hook partition λ ` n and ∅ ( J ( [n]

coeffF cyc
n,J

(sλ) ≥ 0.

Proof Idea: Apply the existence of a map cDes : SYT(λ) −→ 2[n],
which statisfies cyclic descent extension axioms, to show that

1

n

∑
T∈SYT(λ/µ)

F cyc
n,cDes(T ) = sλ/µ.
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Structure constants and equi-distribution

Structure Constants Theorem (AGRR ’18)
Given a set partition [n + m] = A t B with |A| = m and |B| = n,
σ ∈ SA and τ ∈ SB , the following expansion holds

F cyc
n,cDes(σ) · F

cyc
m,cDes(τ) =

∑
[w ]∈[σ]�cyc[τ ]

F cyc
n,cDes(w)

Corollary (AGRR ’18)
Given two permutations σ and τ of disjoint sets of integers, the
distribution of the cyclic descent set over all cyclic shuffles of [σ]
and [τ ] depends only on cDes([σ]) and cDes([τ ]).
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Distribution of cyclic descents over cyclic shuffles

Theorem (AGRR ’18)

Given a set partition [n + m] = A t B with |A| = m and |B| = n,
σ ∈ SA and τ ∈ SB , the number of cyclic shuffles of [σ] and [τ ]
with cyclic descent number k is equal to

(m − i)

(
m + j − i − 1

k − i − 1

)(
n + i − j

k − j

)
+ i

(
m + j − i

k − i

)(
n + i − j − 1

k − j

)
,

where i = cdes(σ) and j = cdes(τ).

Proof idea: Apply a ring homomorphism from Z[[x1, x2, . . .]] to
Z[[q]]� on Structure Constants Theorem,
where Z[[q]]� is defined by equipping Z[[q]] with the product

qi � qj := qmax(i ,j).
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Thank You and

αντιo !
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