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» rule 0: the origin (0,0) is active

0,0 0f1 0f1 0 00 » rule 1: a vertex of value 1 with
0o/o 0/0/ 00|01 1 at least one active neighbor may
0 01 become active.
0 0| o » rule 2: a vertex of value 0 with
at least two active neighbors may
0 0 0 .
become active.
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0j0j0/0j0j0|0 1|0 can become active.
1/0/0 0lololololo Fact: If the process terminates, the
N PN Ny set of active vertices R(C) has

rectangular shape.
Let (cij) be iid random variable P[c;j = 1] =p=1—g,
Pleij=0=1-p=gq

eWhat is the law of semi perimeter |R(C)| of the rectangle ?
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Simplified sandpile model on grid graph Simplification: symmetry on the sampling of C(i, j)
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Simplification: symmetry on the sampling of C(i, j)
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Simplified sandpile model on grid graph Probabilities described by permutation statistics

[0]

[7]o]

7[7]0

7[7]7]0
7277 ]o
7777 [7]0

7 77 @7 [0
7@ 7 [7]o[7 o]0
[ o[ [E o] 7]0]0
7[0[o[7[o]o[7]0]0
? ofo[7]o]o]? o]0
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> Inversion table for some permutation.

Here : (165921184 37 10) with 21 inversions
For each C, weight gX where K is mainly the number of 0's read by an
algorithm.

Proposition

P[IR(C)| = 2(2n+ 1)] = ¢"}(1 — q)" Z g#inversions of o
o€Sn
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Simplified sandpile model on grid graph
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Simplified sandpile model on grid graph Probabilities described by permutation statistics

: W4
AN 0100[1]10
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\ 1 Counted by involutions
* degrees of freedom
Proposition
PR =220+ 1] = ¢ (1-q)" 3 "5
oc€lon

where Ty, is the set of fixed point free involutions of Sy,
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Simplified sandpile model on grid graph Probabilities described by permutation statistics

: 14
AN 0011010
l(or =) |3 0110110
| 111110[0]
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\ 1 Counted by partial permutations

*
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Theorem (D.)

PIR(C)| =2(n+1)] = o

g*"2(1—q)" Z (#decreasing subsequences of o)gMVersions of o
O'GSn
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Simplified sandpile model on grid graph Probabilities described by permutation statistics

: 4
\\ 00
(or=) |3 10
| o
\ (Or /) T 2 1
| 10
X 001
\ 1 Counted by the worst cases of Homing Sort
* degrees of freedom [EWOg, Elizalde,Winkler]

i = (92 + 1) A1 n + ((-1)(0" 1)) G111
1,2 = (q’.2+1) Ai1,i2 + (_(q,1+1 - 1) q) CI'1,I'2*1
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Simplified sandpile model on grid graph Probabilities described by permutation statistics
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* System with 4 g-linear equations
degrees of freedom
Oiy ,ia,iz = qizﬂ) Giy in i3
Giy iz, i3 = —(CJ'.ZJr1 - 1) q) Giyip,ig—1 + (qi1+'.3+1) Ciy in iz
Aig iasiz = (—(a = 1)? (qu - 1)) Giy—1,ip—1,i3—1 + (—quﬂ + 1) Ay —1,ip,i3 + ((q - 1)(qi1+[3 - 1)) Ciy—1,ip-
Ciy ia,iz = —(qf”'é“ - 1) Q) Ciyia—1,i3 + (qizﬂ) Ay iaiz T ((q - 1)(17"2 - 1)q) Giy in—1,i3—1
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Simplified sandpile model on grid graph Probabilities described by permutation statistics
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Counter automaton Canonical growth
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Counter automaton Canonical growth
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Counter automaton Canonical growth

A
Q Growth step in red (n — n+ 1)
q and stable step in blue (n — n).

Al1,lz = (1 - qi1+i2)Al'1—1,iz + (1 - q)Bu—l iz
I I 1 11+’2) BI1 i2—1

’17’2 (qll+l2+1)Al1 i2 + qBI1 21
(qererl)

l1 iz i1,i2
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Counter automaton Canonical growth

A |
Q Growth step in red (n — n+ 1)
q and stable step in blue (n — n).
2
. 1— qn 1— qn—l
(1_ (1= q)ng2nt2 Z Civip = n—21_qC"—1_(ﬁ Co2

i1+i=n
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Counter automaton Partial permutations

About partial permutations

Definition
A partial permutation is a injective partial self-maps on {1,...,n}. We note
R, the set of partial permutations of size n.

|Rn| = 2n|Rp—1| — (n — 1)?|Rn—2| [BRR89, Borwein, Rankin, Renner]

Example
23784776 is a partial maps defined on {1,2,4,5,7,8} and undefined on
(3,6}

Partial permutations <+ permutations with a decreasing subsequence
marked.
Ex: 23784776 — 23584176 has 10 inversions.

r, = Z qinva

O'GRn
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Counter automaton Partial permutations

oc=01...0n€ R,

71 Let k € {1...n4 1}, we shift the value of o that are greater or equal
to k and we insert k at the first position.
Example: o0 = 526413, the rule 71 with k = 2 leads to 2637514
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T2 q”

P » R, partial permutations
m2,q" e . .
m;uu K m.¢"  » T, partial permutations
undefined on 1.

m1,q"

1—qag" 1— n—1\ 2
rh =2 qrn—l_ 7q 'n—2
1—gq 1—gq
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Counter automaton Bijection

qk
1 . q
? qn+1 A qn+1
A [ B W - C
qk
7T27qn
7727(]” k
7r37qn+lfk: T1,q
™ aqk
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Counter automaton Bijection
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Counter automaton Bijection

2n—+2 X N g e Y

7T27qn
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Decreasing subsequences and g-positivity

Theorem .
P[IR(C)| =2(n+1)] = ¢*""2(1 = q)" > cr 4™ °
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Decreasing subsequences and g-positivity

Theorem .
P[IR(C)| =2(n+1)] = ¢*""2(1 = q)" > cr 4™ °

> Zqinvazz Z qinvaWheresn:(njn—]_j,,.,l) anda<b

o€Ry p=<sp 0E€ESn
p=<o

means “a is a subsequence of b".
> Y ses, ¢M 7 = glPl(pl=1)/2 [\[le]qq!! when
p=<o

p = (maxp,maxp —1,...,minp) [BW89, Bjorner, Wachs]
; - !
> ZUGSn qmaJ o — q‘Pl('p‘ 1)/27“[;]'?(7! for any p.

p=<c
Z qinva — Z qmaj o Z (qmaj o qinv a)

ocESh oc€Sn o€Sn
p=<o p=<o p=<o
~~
complex simple may be simpler

Henri Derycke (LaBRI) GASCom 2018 12 / 17



. e . ey o _ g0V o
Decreasing subsequences and g-positivity 20677 % € Nlq]

Let S, the set of permutations on {1...n}, s, the decreasing permutation
(n,n—1,...1).

Theorem (D. 2018)

For any n € N, p < s,, the following sum is a polynomial with positive
integer coefficients.

Z qmajcr _ qinvcr
l1-gq

where S the set of permutations of S,, wich contain the subsequence p.
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Decreasing subsequences and g-positivity 20677 -

Let S, the set of permutations on {1...n}, s, the decreasing permutation
(n,n—1,...1).
Theorem (D. 2018)

For any n € N, p < s,, the following sum is a polynomial with positive
integer coefficients.

q _ qinvcr
2 g

where S the set of permutations of S,, wich contain the subsequence p.

maj o |nv o maj o stat [ea stat o inv o
qrAaT — g™ qrA T — gtete q —q
+ P
1—gq 1—gq 1—gq
ceSk ceSP ceSk
positive ? positive ? positive ?
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Decreasing subsequences and g-positivity Proof via Kadell weighted inversion number

Let W = (Wi j)nxn be an upper triangular matrix.

invyy (o) = Z wijx(o (i) > a(j))

1<i<j<n
is the weighted inversion number of o with respect to W [WK85, Kadell
1085].

01111 01000
0 0111 0 0200
Winw=|[0 0 0 1 1| Wny=|(0 0 0 3 0
0 0001 0 00 0 4
0 00O0O 0 00 0O
4
00
2 02 W™t = Wi,
Interpolation with W42 = 1 0 =< W2l = Winaj
0 4 Wi,lzwi+1,i
0 0
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Decreasing subsequences and g-positivity Proof via Kadell weighted inversion number

qmaj o _ qinv o qianL"(U) _ qinij,,-,l(o)
P D IRDD =g
oeSk 2<i<j<ngeSt

inv, (o) inv i q(0)
. . . g wihi'% g™ wis
Lemma: Forany2<i<j<n) :0685 T

Element of the proof:

€ NJq].
» Involution from Kadell: 'Y : o — ¢* and for any o,

inVWj,i_1(O'*) = inVWj,i(O')

» If o counts negatively, then o* € S

Henri Derycke (LaBRI) GASCom 2018

15 / 17



Conclusion

Extension of the previous lemma:

Theorem
For any 2 < i < j < n, for any set | of inversions and 5 8
set D of descent, ‘ >< ‘
qianj’i(U) o qianj,,-,l(U) 2 4 7
> - € Nlg]. ]
—4a 1 3

inversions of Dl
desc (67 1)=D

Remark
Related to a simplification on the sandpile model by[HJL17, Hough, Jerison,

Levine]
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Conclusion

Thank you
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