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Simplified sandpile model on grid graph
Froböse local model: Bootstrap percolation [GH08]
Simplification: symmetry on the sampling of C (i , j)
Probabilities described by permutation statistics

From rectangular growth to partial permutations
Counter automaton for a canonical growth
Counter automaton for partial permutations
Automata identification

Decreasing subsequences and q-positivity∑
σ∈??

qmaj σ−qinv σ
1−q ∈ N[q]

Proof via Kadell weighted inversion number
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Simplified sandpile model on grid graph Froböse local model: Bootstrap percolation [GH08]

Let C = (ci ,j)(i ,j)∈Z2 ∈ {0, 1}Z
2
be a configuration of the square lattice Z2.
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I rule 0: the origin (0, 0) is active
I rule 1: a vertex of value 1 with

at least one active neighbor may
become active.

I rule 2: a vertex of value 0 with
at least two active neighbors may
become active.

The process terminates if no vertex
can become active.
Fact: If the process terminates, the
set of active vertices R(C) has
rectangular shape.

Let (ci ,j) be iid random variable P[ci ,j = 1] = p = 1− q,
P[ci ,j = 0] = 1− p = q
•What is the law of semi perimeter |R(C)| of the rectangle ?
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Simplified sandpile model on grid graph Simplification: symmetry on the sampling of C(i, j)
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System with 9 q-linear equations
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Simplified sandpile model on grid graph Probabilities described by permutation statistics

·

• 1 1
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I Inversion table for some permutation.
Here : (1 6 5 9 2 11 8 4 3 7 10) with 21 inversions

For each C, weight qK where K is mainly the number of 0’s read by an
algorithm.

Proposition

P[|R(C)| = 2(2n + 1)] = qn+1(1− q)n
∑
σ∈Sn

q#inversions of σ
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Proposition

P[|R(C)| = 2(2n + 1)] = q2n+1(1− q)n
∑
σ∈I2n

q
inv σ−n

2

where I2n is the set of fixed point free involutions of S2n
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Counted by partial permutations

Theorem (D.)
P[|R(C)| = 2(n + 1)] =
q2n+2(1− q)n

∑
σ∈Sn

(#decreasing subsequences of σ)q#inversions of σ
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Counted by the worst cases of Homing Sort
[EW09, Elizalde,Winkler] Ai1,i2 =

(
−qi2+1 + 1

)
Ai1−1,i2 +

(
(q − 1)

(
qi1 − 1
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(
qi1+1

)
Ci1,i2

P[|R(C)| = n + 2] =
∑

i1+i2=n

Gi1,i2

Henri Derycke (LaBRI) GASCom 2018 6 / 17



Simplified sandpile model on grid graph Probabilities described by permutation statistics
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System with 4 q-linear equations



Oi1,i2,i3 =
(
qi2+1

)
Gi1,i2,i3

Gi1,i2,i3 =
(
−
(
qi2+1 − 1

)
q
)
Gi1,i2,i3−1 +

(
qi1+i3+1

)
Ci1,i2,i3

Ai1,i2,i3 =
(
−(q − 1)2

(
qi2 − 1

))
Gi1−1,i2−1,i3−1 +

(
−qi2+1 + 1

)
Ai1−1,i2,i3 +

(
(q − 1)

(
qi1+i3 − 1

))
Ci1−1,i2−1,i3

Ci1,i2,i3 =
(
−
(
qi1+i3+1 − 1

)
q
)
Ci1,i2−1,i3 +

(
qi2+1

)
Ai1,i2,i3 +

(
(q − 1)

(
qi2 − 1

)
q
)
Gi1,i2−1,i3−1
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Counter automaton

Simplified sandpile model on grid graph
Froböse local model: Bootstrap percolation [GH08]
Simplification: symmetry on the sampling of C (i , j)
Probabilities described by permutation statistics

From rectangular growth to partial permutations
Counter automaton for a canonical growth
Counter automaton for partial permutations
Automata identification

Decreasing subsequences and q-positivity∑
σ∈??

qmaj σ−qinv σ
1−q ∈ N[q]

Proof via Kadell weighted inversion number
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Counter automaton Canonical growth

?

?

A

0

0

0 0 1 ?

B′

0

0

B
0

0

0 0

C
qn+1 qn+1

qk

qk

q1

1
1
1

0
0
0

0 1 0 0
1 1 1 0 1

1

Growth step in red (n→ n + 1)
and stable step in blue (n→ n).

Henri Derycke (LaBRI) GASCom 2018 8 / 17



Counter automaton Canonical growth

?

?

A

0

0

0 0 1 ?

B′

0

0

B
0

0

0 0

C
qn+1 qn+1

qk

qk

q1

1
1
1

0
0
0

0 1 0 0
1 1 1 0 1

1

Growth step in red (n→ n + 1)
and stable step in blue (n→ n).

Henri Derycke (LaBRI) GASCom 2018 8 / 17



Counter automaton Canonical growth

?

?

A

0

0

0 0 1 ?

B′

0

0

B
0

0

0 0

C
qn+1 qn+1

qk

qk

q1

1
1
1

0
0
0

0 1 0 0
1 1 1 0 1

1

Growth step in red (n→ n + 1)
and stable step in blue (n→ n).

Henri Derycke (LaBRI) GASCom 2018 8 / 17



Counter automaton Canonical growth

?

?

A

0

0

0 0 1 ?

B′

0

0

B
0

0

0 0

C
qn+1 qn+1

qk

qk

q1

1
1
1

0
0
0

0 1 0 0
1 1 1 0 1

1

Growth step in red (n→ n + 1)
and stable step in blue (n→ n).

Henri Derycke (LaBRI) GASCom 2018 8 / 17



Counter automaton Canonical growth

?

?

A

0

0

0 0 1 ?

B′

0

0

B
0

0

0 0

C
qn+1 qn+1

qk

qk

q1

1
1
1

0
0
0

0 1 0 0
1 1 1 0 1

1

Growth step in red (n→ n + 1)
and stable step in blue (n→ n).

Henri Derycke (LaBRI) GASCom 2018 8 / 17



Counter automaton Canonical growth

?

?

A

0

0

0 0 1 ?

B′

0

0

B
0

0

0 0

C
qn+1 qn+1

qk

qk

q1

1
1
1

0
0
0

0 1 0 0
1 1 1 0 1

1

Growth step in red (n→ n + 1)
and stable step in blue (n→ n).

Henri Derycke (LaBRI) GASCom 2018 8 / 17



Counter automaton Canonical growth

?

?

A

0

0

0 0 1 ?

B′

0

0

B
0

0

0 0

C
qn+1 qn+1

qk

qk

q1

1
1
1

0
0
0

0 1 0 0
1 1 1 0 1

1

Growth step in red (n→ n + 1)
and stable step in blue (n→ n).

Henri Derycke (LaBRI) GASCom 2018 8 / 17



Counter automaton Canonical growth

?

?

A

0

0

0 0 1 ?

B′

0

0

B
0

0

0 0

C
qn+1 qn+1

qk

qk

q1

1
1
1

0
0
0

0 1 0 0
1 1 1 0 1

1

Growth step in red (n→ n + 1)
and stable step in blue (n→ n).

Ai1,i2 = (1− qi1+i2)Ai1−1,i2 + (1− q)B ′i1−1,i2
B ′i1,i2 =

(
1− qi1+i2

)
Bi1,i2−1

Bi1,i2 = (qi1+i2+1)Ai1,i2 + qB ′i1,i21
Ci1,i2 = (qi1+i2+1)Bi1,i2
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Counter automaton Canonical growth

?
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Growth step in red (n→ n + 1)
and stable step in blue (n→ n).

1
(1− q)nq2n+2

∑
i1+i2=n

Ci1,i2 := Cn = 2
1− qn

1− q
Cn−1 −

(
1− qn−1

1− q

)2

Cn−2
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Counter automaton Partial permutations

About partial permutations
Definition
A partial permutation is a injective partial self-maps on {1, . . . , n}. We note
Rn the set of partial permutations of size n.

|Rn| = 2n|Rn−1| − (n − 1)2|Rn−2| [BRR89,Borwein,Rankin,Renner ]

Example
23?84?76 is a partial maps defined on {1, 2, 4, 5, 7, 8} and undefined on
{3, 6}.
Partial permutations ↔ permutations with a decreasing subsequence
marked.
Ex: 23?84?76→ 23584176 has 10 inversions.

rn =
∑
σ∈Rn

qinv σ
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Counter automaton Partial permutations

σ = σ1 . . . σn ∈ Rn

π1 Let k ∈ {1 . . . n + 1}, we shift the value of σ that are greater or equal
to k and we insert k at the first position.
Example: σ = 526413, the rule π1 with k = 2 leads to 2637514

π2 We insert a marked n + 1 at the first position.
Example: σ = 526413, the rule π2 leads to 6526413

π3 Let k ∈ {2 . . . n+ 1}, if σ1 is marked, we insert n+ 1 at position k in σ.
Example: σ = 526413, the rule π3 with k = 4 leads to 5267413

Tn Rn \ Tn

π1,q
k

π1,q
k

π2,q
n

π2,q
n

π3,q
n+1−k

I Rn partial permutations
I Tn partial permutations

undefined on 1.

rn = 2
1− qn

1− q
rn−1 −

(
1− qn−1

1− q

)2

rn−2
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Counter automaton Bijection

?

?

A

0

0

0 0 1 ?

B′

0

0

B
0

0

0 0

C
qn+1 qn+1

qk

qk

q1

X ��B Y
α β

αβ

Tn Rn \ Tn

π1,q
k

π1,q
k

π2,q
n

π2,q
n

π3,q
n+1−k
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Counter automaton Bijection
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Decreasing subsequences and q-positivity

Theorem
P[|R(C)| = 2(n + 1)] = q2n+2(1− q)n

∑
σ∈Rn

qinv σ

I
∑
σ∈Rn

qinv σ =
∑
p≺sn

∑
σ∈Sn
p≺σ

qinv σ where sn = (n, n − 1, . . . , 1) and a ≺ b

means “a is a subsequence of b”.

I
∑

σ∈Sn
p≺σ

qinv σ = q|p|(|p|−1)/2 [n]q!
[|p|]q! when

p = (max p,max p − 1, . . . ,min p) [BW89, Bjorner, Wachs]

I
∑

σ∈Sn
p≺σ

qmaj σ = q|p|(|p|−1)/2 [n]q!
[|p|]q! for any p.∑

σ∈Sn
p≺σ

qinv σ

︸ ︷︷ ︸
complex

=
∑
σ∈Sn
p≺σ

qmaj σ

︸ ︷︷ ︸
simple

−
∑
σ∈Sn
p≺σ

(
qmaj σ − qinv σ)

︸ ︷︷ ︸
may be simpler
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Decreasing subsequences and q-positivity
∑
σ∈??

qmaj σ−qinv σ
1−q

∈ N[q]

Let Sn the set of permutations on {1 . . . n}, sn the decreasing permutation
(n, n − 1, . . . 1).

Theorem (D. 2018)
For any n ∈ N, p ≺ sn, the following sum is a polynomial with positive
integer coefficients. ∑

σ∈Spn

qmaj σ − qinv σ

1− q

where Spn the set of permutations of Sn wich contain the subsequence p.

∑
σ∈Spn

qmaj σ − qinv σ

1− q︸ ︷︷ ︸
positive ?

=
∑
σ∈Spn

qmaj σ − qstat σ

1− q︸ ︷︷ ︸
positive ?

+
∑
σ∈Spn

qstat σ − qinv σ

1− q︸ ︷︷ ︸
positive ?

Henri Derycke (LaBRI) GASCom 2018 13 / 17



Decreasing subsequences and q-positivity
∑
σ∈??

qmaj σ−qinv σ
1−q

∈ N[q]

Let Sn the set of permutations on {1 . . . n}, sn the decreasing permutation
(n, n − 1, . . . 1).

Theorem (D. 2018)
For any n ∈ N, p ≺ sn, the following sum is a polynomial with positive
integer coefficients. ∑

σ∈Spn

qmaj σ − qinv σ

1− q

where Spn the set of permutations of Sn wich contain the subsequence p.

∑
σ∈Spn

qmaj σ − qinv σ

1− q︸ ︷︷ ︸
positive ?

=
∑
σ∈Spn

qmaj σ − qstat σ

1− q︸ ︷︷ ︸
positive ?

+
∑
σ∈Spn

qstat σ − qinv σ

1− q︸ ︷︷ ︸
positive ?

Henri Derycke (LaBRI) GASCom 2018 13 / 17



Decreasing subsequences and q-positivity Proof via Kadell weighted inversion number

Let W = (wi ,j)n×n be an upper triangular matrix.

invW (σ) =
∑

1≤i<j≤n
wi ,jχ(σ(i) > σ(j))

is the weighted inversion number of σ with respect to W [WK85, Kadell
1985].

Winv =


0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0

 Wmaj =


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0



Interpolation with W 4,2 =

4


0 1 1 0 0
0 0 1 2 0 2
0 0 0 1 0
0 0 0 0 4
0 0 0 0 0

⇒


W n,1 = Winv
W 2,1 = Wmaj
W i ,1 = W i+1,i
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Decreasing subsequences and q-positivity Proof via Kadell weighted inversion number

∑
σ∈Spn

qmaj σ − qinv σ

1− q
=

∑
2≤i<j≤n

∑
σ∈Spn

qinv
Wj,i (σ) − qinv

Wj,i−1 (σ)

1− q

Lemma: For any 2 ≤ i < j ≤ n
∑

σ∈Spn
q
inv

Wj,i (σ)−qinvWj,i−1 (σ)

1−q ∈ N[q].
Element of the proof:

I Involution from Kadell: ∗i ,j : σ 7→ σ∗ and for any σ,
invW j,i−1(σ∗) = invW j,i (σ)

I If σ counts negatively, then σ∗ ∈ Spn
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Conclusion

Extension of the previous lemma:

Theorem
For any 2 ≤ i < j ≤ n, for any set I of inversions and
set D of descent,

∑
inversions of σ⊃I
desc (σ−1)=D

qinv
Wj,i (σ) − qinv

Wj,i−1 (σ)

1− q
∈ N[q].

5 8

2 4

1

7

3

Remark
Related to a simplification on the sandpile model by[HJL17, Hough, Jerison,
Levine]
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Conclusion

Thank you
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