Pattern avoiding permutations in genome rearrangement problems: the transposition model

G. Cerbai, L. Ferrari

Dipartimento di Matematica e Informatica "U. Dini", Universitá degli Studi di Firenze, Viale Morgagni 65, 50134 Firenze, Italy giuliocerbai14@gmail.com,luca.ferrari@unifi.it

GASCom 2018, Athens, 18-20 June 2018.

The genome rearrangement problem

- Given a set of allowed mutations, understand how a genomic segment can evolve.
- Find a minimal sequence of mutations that transforms one genome into another one (parsimony principle).

The model

- Genome \Longrightarrow Permutation.
- Mutation ⇒ Combinatorial operation.

("Combinatorics of genome rearrangement", Fertin, Labarre et al., 2009)

Our case: the block transposition operation

The block transposition $\tau(i,j,l)$ transforms π into:

$$\pi_1 \cdots \pi_{i-1} \left[\pi_j \pi_{j+1} \cdots \pi_{l-1} \right] \left[\pi_i \pi_{i+1} \cdots \pi_{j-1} \right] \pi_l \cdots \pi_n.$$

("Sorting by transpositions", Bafna, Pevzner, 1998)

The genome rearrangement problem

- Given a set of allowed mutations, understand how a genomic segment can evolve.
- Find a minimal sequence of mutations that transforms one genome into another one (parsimony principle).

The model

- Genome ⇒ Permutation.
- Mutation ⇒ Combinatorial operation.

("Combinatorics of genome rearrangement", Fertin, Labarre et al., 2009)

Our case: the block transposition operation

The block transposition $\tau(i,j,l)$ transforms π into:

$$\pi_1\cdots\pi_{i-1}$$
 $\boxed{\pi_i\pi_{j+1}\cdots\pi_{l-1}}$ $\boxed{\pi_i\pi_{i+1}\cdots\pi_{j-1}}$ $\boxed{\pi_l\cdots\pi_n}$.

("Sorting by transpositions", Bafna, Pevzner, 1998)

The genome rearrangement problem

- Given a set of allowed mutations, understand how a genomic segment can evolve.
- Find a minimal sequence of mutations that transforms one genome into another one (parsimony principle).

The model

- Genome \iff Permutation.
- Mutation ⇒ Combinatorial operation.

("Combinatorics of genome rearrangement", Fertin, Labarre et al., 2009)

Our case: the block transposition operation

The block transposition $\tau(i, j, l)$ transforms π into:

$$\pi_1 \cdots \pi_{i-1} \left[\overline{\pi_j \pi_{j+1} \cdots \pi_{l-1}} \right] \left[\overline{\pi_i \pi_{i+1} \cdots \pi_{j-1}} \right] \pi_l \cdots \pi_n.$$

("Sorting by transpositions", Bafna, Pevzner, 1998)

Given $\pi, \rho \in S_n$, define:

 $d(\pi, \rho) = \text{minimum number of operations needed to transform } \pi \text{ into } \rho$

- Lucky case: d is a distance.
- Luckier case: d is left-invariant
 - ⇒ computing *d* is equivalent to the problem of **sorting a permutation** using the minimum number of allowed operations

Notations

- $d(\pi) = d(\pi, id);$
- $B_k(n) = \{ \pi \in S_n : d(\pi) \le k \};$
- $\bullet \ B_k = \bigcup_{n>0} B_k(n).$

Given $\pi, \rho \in S_n$, define:

 $d(\pi, \rho) = \text{minimum number of operations needed to transform } \pi \text{ into } \rho$

- Lucky case: d is a distance.
- Luckier case: d is left-invariant
 - ⇒ computing *d* is equivalent to the problem of **sorting a permutation** using the minimum number of allowed operations

Notations

- $d(\pi) = d(\pi, id);$
- $B_k(n) = \{ \pi \in S_n : d(\pi) \le k \};$
- $B_k = \bigcup_{n>0} B_k(n)$.

Given $\pi, \rho \in S_n$, define:

 $d(\pi, \rho) = \text{minimum number of operations needed to transform } \pi \text{ into } \rho$

- Lucky case: d is a distance.
- Luckier case: d is left-invariant
 - \Rightarrow computing d is equivalent to the problem of **sorting a permutation** using the minimum number of allowed operations.

Notations

- $d(\pi) = d(\pi, id);$
- $B_k(n) = \{ \pi \in S_n : d(\pi) \le k \};$
- $B_k = \bigcup_{n>0} B_k(n)$.

Given $\pi, \rho \in S_n$, define:

 $d(\pi, \rho) = \text{minimum number of operations needed to transform } \pi \text{ into } \rho$

- Lucky case: d is a distance.
- Luckier case: d is left-invariant
 ⇒ computing d is equivalent to the problem of sorting a
 permutation using the minimum number of allowed operations.

Notations

- $d(\pi) = d(\pi, id)$;
- $B_k(n) = \{ \pi \in S_n : d(\pi) \leq k \};$
- $\bullet \ B_k = \bigcup_{n>0} B_k(n).$

General problems

- Characterize and enumerate the permutations of $B_k(n)$;
- design sorting algorithms and study the related complexity issues;
- **3** compute the diameter of $B_k(n)$ and S_n ;
- characterize the permutations of $B_k(n)$ and S_n having maximum distance from the identity.

Idea

Analyze the genomic model in terms of permutation patterns!

("A variant of the tandem duplication-random loss model of genome rearrangement", Bouvel, Rossin 2009)

General problems

- Characterize and enumerate the permutations of $B_k(n)$;
- design sorting algorithms and study the related complexity issues;
- **3** compute the diameter of $B_k(n)$ and S_n ;
- characterize the permutations of $B_k(n)$ and S_n having maximum distance from the identity.

Idea:

Analyze the genomic model in terms of permutation patterns!

("A variant of the tandem duplication-random loss model of genome rearrangement", Bouvel, Rossin 2009)

Permutation patterns

Definition of Pattern

A permutation ρ (pattern) is contained in π (we write $\rho \leq \pi$) if π has a subsequence of elements which is order isomorphic to ρ .

- π avoids ρ if it doesn't contain ρ .
- ullet \leq is a partial order on the set of all permutations ${\cal S}.$

Example:

- 213 $\leq \overline{4}2\overline{3}1\overline{5}$, because 213 \cong 435 (occurrence);
- 213 ≤ 24531.

Permutation class C:

A subset $C \subset \mathcal{S}$ closed downwards under this partial order (ideal).

Remark

A class C is uniquely determined by the minimal elements in $S \setminus C$ (basis)!

Permutation patterns

Definition of Pattern

A permutation ρ (pattern) is contained in π (we write $\rho \leq \pi$) if π has a subsequence of elements which is order isomorphic to ρ .

- π avoids ρ if it doesn't contain ρ .
- ullet \leq is a partial order on the set of all permutations $\mathcal{S}.$

Example:

- 213 $\leq \overline{4}2\overline{3}1\overline{5}$, because 213 \cong 435 (occurrence);
- 213 ≮ 24531.

Permutation class C:

A subset $C \subset S$ closed downwards under this partial order (ideal).

Remark

A class C is uniquely determined by the minimal elements in $S \setminus C$ (basis)!

Patterns in the transposition model

Transposition distance

- $d(\cdot, \cdot)$ block transposition distance;
- $B_k = \{ \pi \in \mathcal{S} : d(\pi) \le k \}$ ball of radius k.

Remark

For each $k \ge 0$, B_k is a permutation class.

Idea

If $\rho \leq \pi$ and τ_1, \ldots, τ_k sort π , perform the same block transpositions to one occurrence of ρ , without considering the other elements of π .

Main goals

- ① Investigate the structure of B_k (generating permutations).
- ② Characterize B_k in terms of avoided patterns (find the basis!).

Patterns in the transposition model

Transposition distance

- $d(\cdot, \cdot)$ block transposition distance;
- $B_k = \{ \pi \in \mathcal{S} : d(\pi) \le k \}$ ball of radius k.

Remark

For each $k \ge 0$, B_k is a permutation class.

Idea

If $\rho \leq \pi$ and τ_1, \ldots, τ_k sort π , perform the same block transpositions to one occurrence of ρ , without considering the other elements of π .

Main goals

- **1** Investigate the structure of B_k (generating permutations).
- ② Characterize B_k in terms of avoided patterns (find the basis!).

Tools and notations

- Strip of $\pi = \pi_1 \cdots \pi_n$: a maximal consecutive substring $\pi_i, \pi_{i+1}, \dots, \pi_j$ such that $\pi_{l+1} = \pi_l + 1$ for each $l = i, \dots, j-1$.
- Reduced permutation: each strip has length 1 (i.e. $\pi_{l+1} \neq \pi_l + 1$ for each l).
- $red(\pi)$: the reduced permutation obtained from π by contracting each non trivial strip and suitably rescaling the elements.

Example:

$$\pi = 123/6/45/7 \xrightarrow{contract} 1/6/4/7 \xrightarrow{rescale} 1 \ 3 \ 2 \ 4 = red(\pi)$$
.

Remark

- $red(\pi) \leq \pi$;
- $d(red(\pi)) = d(\pi)$.

Tools and notations

Monotone inflation

 $\pi = \pi_1 \cdots \pi_n$, $v = (v_1, \dots, v_n)$ vector of non-negative integers; the **monotone inflation** of π through v is the permutation $\pi[v]$ obtained by:

- replacing each element π_i with id_{v_i} ;
- 2 rescaling the new strips in accordance to the order of π .

Example:

$$\pi = 1324, \ v = (2, 1, 4, 0) \ \Rightarrow \pi[v] = \underbrace{12}_{1}\underbrace{7}_{3}\underbrace{3456}_{2}\underbrace{4}_{4} = 1273456$$

- $MI(\pi) = {\pi[v] : v \text{ vector of non-negative integers}};$
- $MI(C) = \bigcup_{\pi \in C} MI(\pi)$.

Monotone inflations and geometric grid classes

Remark

 $M \{-1,0,1\}$ -matrix, Geom(M) the geometric grid class of M.

- $\pi \in \mathcal{S}$, M_{π} its permutation matrix. Then:

 - $MI(\pi) = MI(red(\pi)).$

("Geometric grid classes of permutation", Albert, Atkinson et al., 2011)

Corollary

C set of reduced permutations.

- MI(C) is a class of pattern avoiding permutations;
- MI(C) is strongly rational and finitely based.

Geometrical construction:

 $1 \xrightarrow{inflation} 1234 \xrightarrow{transposition} 1324$

 $1 \xrightarrow{inflation} 1234 \xrightarrow{transposition} 1324$

$$B_1=MI(1324)$$

Geometrical construction:

 $1 \xrightarrow{inflation} 1234 \xrightarrow{transposition} 1324$

Theorem

- $B_1 = MI(1324)$ (one reduced generating permutation);
- ② $\pi \in B_1 \iff \pi \text{ avoids } 321,2143,2413,3142$
- \odot the generating function of B_1 is:

$$F(x) = \sum_{n \ge 0} f_n x^n = \frac{1 - 3x + 4x^2 - x^3}{(1 - x)^4},$$

where $f_n = \binom{n+3}{3} - 2\binom{n+2}{2} + \binom{n+1}{1} + \binom{n+0}{0}$ [compositions of n].

Theorem

- **1** $B_1 = MI(1324)$ (one reduced **generating permutation**);
- ② $\pi \in B_1 \iff \pi \text{ avoids } 321,2143,2413,3142;$
- 3 the generating function of B_1 is

$$F(x) = \sum_{n \ge 0} f_n x^n = \frac{1 - 3x + 4x^2 - x^3}{(1 - x)^4},$$

where $f_n = \binom{n+3}{3} - 2\binom{n+2}{2} + \binom{n+1}{1} + \binom{n+0}{0}$ [compositions of n].

Theorem

- **1** $B_1 = MI(1324)$ (one reduced **generating permutation**);
- ② $\pi \in B_1 \iff \pi \text{ avoids } 321,2143,2413,3142;$
- \odot the generating function of B_1 is:

$$F(x) = \sum_{n>0} f_n x^n = \frac{1 - 3x + 4x^2 - x^3}{(1 - x)^4},$$

where
$$f_n = \binom{n+3}{3} - 2\binom{n+2}{2} + \binom{n+1}{1} + \binom{n+0}{0}$$
 [compositions of n].

Corollary

Let $k \geq 1$.

• There exist N = N(k) reduced permutations $\alpha^{(1)}, \dots, \alpha^{(N)}$ of length 3k + 1, each at distance k from the identity, such that:

$$B_k = \bigcup_{j=1}^N MI(\alpha^{(j)}).$$

- ② the generating permutations of B_k are exactly the maximal reduced permutations of B_K ;
- \odot B_k is strongly rational and finitely-based (via geometric grid classes);
- ② each permutation of its basis has length at most 3k + 1. [easy bound 3k + 2]

Corollary

Let $k \geq 1$.

• There exist N = N(k) reduced permutations $\alpha^{(1)}, \dots, \alpha^{(N)}$ of length 3k + 1, each at distance k from the identity, such that:

$$B_k = \bigcup_{j=1}^N MI(\alpha^{(j)}).$$

- ② the generating permutations of B_k are exactly the maximal reduced permutations of B_K ;
- \odot B_k is strongly rational and finitely-based (via geometric grid classes);
- **3** each permutation of its basis has length at most 3k + 1. [easy bound 3k + 2]

Corollary

Let $k \geq 1$.

• There exist N = N(k) reduced permutations $\alpha^{(1)}, \dots, \alpha^{(N)}$ of length 3k + 1, each at distance k from the identity, such that:

$$B_k = \bigcup_{j=1}^N MI(\alpha^{(j)}).$$

- 2 the generating permutations of B_k are exactly the maximal reduced permutations of B_K ;
- $oldsymbol{3}$ B_k is strongly rational and finitely-based (via geometric grid classes);
- each permutation of its basis has length at most 3k + 1. [easy bound 3k + 2]

Corollary

Let $k \geq 1$.

• There exist N = N(k) reduced permutations $\alpha^{(1)}, \dots, \alpha^{(N)}$ of length 3k + 1, each at distance k from the identity, such that:

$$B_k = \bigcup_{j=1}^N MI(\alpha^{(j)}).$$

- 2 the generating permutations of B_k are exactly the maximal reduced permutations of B_K ;
- $oldsymbol{3}$ B_k is strongly rational and finitely-based (via geometric grid classes);
- each permutation of its basis has length at most 3k + 1. [easy bound 3k + 2]

Cheyne Homberger, Vincent Vatter, "On the effective and automatic enumeration of polynomial permutation classes", 2016.

- More general approach using peg permutation classes;
- algorithm for enumerating any permutation class with polynomial enumeration from a structural description (special case: B_k).

Open problems (still a lot of work...)

- ① Enumeration of the generating permutations of B_k .
- ② Better understanding of the basis permutations (enumeration, length,...).
- Use this approach to analyze other genomic distances (reversal, delete-insertion,...).

Cheyne Homberger, Vincent Vatter, "On the effective and automatic enumeration of polynomial permutation classes", 2016.

- More general approach using peg permutation classes;
- algorithm for enumerating any permutation class with polynomial enumeration from a structural description (special case: B_k).

Open problems (still a lot of work...)

- **1** Enumeration of the generating permutations of B_k .
- ② Better understanding of the basis permutations (enumeration, length,...).
- Use this approach to analyze other genomic distances (reversal, delete-insertion,...).

A special case: the prefix-transposition distance

Block prefix-transposition:

$$\begin{array}{c|c}
\pi_1\pi_2\cdots\pi_{j-1} & \pi_j\pi_{j+1}\cdots\pi_{l-1} \\
& \downarrow \\
\hline
\pi_j\pi_{j+1}\cdots\pi_{l-1} & \pi_l\pi_2\cdots\pi_{j-1} \\
\hline
\pi_1\pi_2\cdots\pi_{n-1} & \pi_l\cdots\pi_{n-1}
\end{array}$$

("Sorting by prefix transpositions", Dias, Meidanis, 2002)

B_1^{pre}

- $B_1^{pre} = MI(213);$
- $\pi \in B_1^{pre} \iff \pi \text{ avoids } 321, 132.$

A special case: the prefix-transposition distance

Block prefix-transposition:

$$\begin{array}{c|c}
\pi_1\pi_2\cdots\pi_{j-1} & \pi_j\pi_{j+1}\cdots\pi_{l-1} \\
& \downarrow \\
\hline
\pi_j\pi_{j+1}\cdots\pi_{l-1} & \pi_l\pi_2\cdots\pi_{j-1} \\
\hline
\pi_1\pi_2\cdots\pi_{n-1} & \pi_l\cdots\pi_{n-1}
\end{array}$$

("Sorting by prefix transpositions", Dias, Meidanis, 2002)

B_1^{pre}

- $B_1^{pre} = MI(213);$
- $\pi \in B_1^{pre} \iff \pi \text{ avoids } 321, 132.$

Generating permutations

Corollary

For $k \ge 1$, the generating permutations of B_k^{pre} are exactly the reduced permutations of length 2k+1 and distance k from the identity.

Remark

The inductive construction gives distinct generating permutations.

Let g_k be the number of generating permutations of B_k^{pre} :

$$\begin{cases} B_1^{pre} = MI(213) & \Longrightarrow g_1 = 1; \\ g_k = {2k \choose 2} \cdot g_{k-1} = \prod_{i=1}^k {2i \choose i} = \frac{(2k)!}{2^k}, \text{ for } k \ge 2. \end{cases}$$

Basis permutations

Theorem

Every permutation of the basis of B_k^{pre} has length at most 2k + 1.

Easy bound 2k + 2 as in the general case (2k + 1 tricky).

Example

- $B_2^{pre} = MI(32415, 41325, 31425, 24135, 24315, 42135);$
- $\pi \in B_2^{pre} \iff \pi$ avoids the patterns: 1432, 2143, 4321 13524, 14253, 24351, 25314, 25413, 35142, 35214, 35241, 41352, 42513, 42531, 43152, 51324, 52413, 53142.

Pattern avoiding permutations in genome rearrangement problems: the transposition model

G. Cerbai, L. Ferrari

Dipartimento di Matematica e Informatica "U. Dini", Universitá degli Studi di Firenze, Viale Morgagni 65, 50134 Firenze, Italy giuliocerbai14@gmail.com,luca.ferrari@unifi.it

GASCom 2018, Athens, 18-20 June 2018.