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The genome rearrangement problem
Given a set of allowed mutations, understand how a genomic segment
can evolve.
Find a minimal sequence of mutations that transforms one genome
into another one (parsimony principle).

The model
Genome =⇒ Permutation.
Mutation ⇒ Combinatorial operation.

("Combinatorics of genome rearrangement", Fertin, Labarre et al., 2009)

Our case: the block transposition operation
The block transposition τ(i , j , l) transforms π into:

π1 · · ·πi−1 πjπj+1 · · ·πl−1 πiπi+1 · · ·πj−1 πl · · ·πn.

("Sorting by transpositions", Bafna, Pevzner, 1998)
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Genomic distance
Given π, ρ ∈ Sn, define:

d(π, ρ) = minimum number of operations needed to transform π into ρ

Lucky case: d is a distance.
Luckier case: d is left-invariant
⇒ computing d is equivalent to the problem of sorting a
permutation using the minimum number of allowed operations.

Notations
Given a left-invariant distance, we define:

d(π) = d(π, id);

Bk(n) = {π ∈ Sn : d(π) ≤ k};

Bk =
⋃

n≥0 Bk(n).
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General problems

1 Characterize and enumerate the permutations of Bk(n);
2 design sorting algorithms and study the related complexity issues;
3 compute the diameter of Bk(n) and Sn;
4 characterize the permutations of Bk(n) and Sn having maximum

distance from the identity.

Idea:
Analyze the genomic model in terms of permutation patterns!

("A variant of the tandem duplication-random loss model of genome
rearrangement", Bouvel, Rossin 2009)
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Permutation patterns

Definition of Pattern
A permutation ρ (pattern) is contained in π (we write ρ ≤ π) if π has a
subsequence of elements which is order isomorphic to ρ.

π avoids ρ if it doesn’t contain ρ.
≤ is a partial order on the set of all permutations S.

Example:
213 ≤ 42315, because 213 ∼= 435 (occurrence);
213 6≤ 24531.

Permutation class C :
A subset C ⊂ S closed downwards under this partial order (ideal).

Remark
A class C is uniquely determined by the minimal elements in S \ C (basis)!
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Patterns in the transposition model

Transposition distance
d(·, ·) block transposition distance;
Bk = {π ∈ S : d(π) ≤ k} ball of radius k .

Remark
For each k ≥ 0, Bk is a permutation class.

Idea
If ρ ≤ π and τ1, . . . , τk sort π, perform the same block transpositions to
one occurrence of ρ, without considering the other elements of π.

Main goals
1 Investigate the structure of Bk (generating permutations).
2 Characterize Bk in terms of avoided patterns (find the basis!).
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Tools and notations

Strip of π = π1 · · ·πn: a maximal consecutive substring
πi , πi+1, . . . , πj such that πl+1 = πl + 1 for each l = i , . . . , j − 1.
Reduced permutation: each strip has length 1 (i.e. πl+1 6= πl + 1
for each l).
red(π): the reduced permutation obtained from π by contracting each
non trivial strip and suitably rescaling the elements.

Example:
π = 123/6/45/7 contract−−−−−→ 1/6/4/7 rescale−−−−→ 1 3 2 4 = red(π).

Remark
red(π) ≤ π;
d(red(π)) = d(π).
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Tools and notations

Monotone inflation
π = π1 · · ·πn, v = (v1, . . . , vn) vector of non-negative integers; the
monotone inflation of π through v is the permutation π[v ] obtained by:

1 replacing each element πi with idvi ;
2 rescaling the new strips in accordance to the order of π.

Example:
π = 1324, v = (2, 1, 4, 0) ⇒ π[v ] = 12︸︷︷︸

1

7︸︷︷︸
3

3456︸︷︷︸
2
︸︷︷︸
4

= 1273456

MI (π) = {π[v ] : v vector of non-negative integers};
MI (C ) =

⋃
π∈C MI (π).
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Monotone inflations and geometric grid classes

Remark
M {−1, 0, 1}-matrix, Geom(M) the geometric grid class of M.
π ∈ S, Mπ its permutation matrix. Then:

1 Geom(Mπ) = Geom(Mred(π));
2 MI (π) = Geom(Mπ);
3 MI (π) = MI (red(π)).

("Geometric grid classes of permutation", Albert, Atkinson et al., 2011)

Corollary
C set of reduced permutations.

MI (C ) is a class of pattern avoiding permutations;
MI (C ) is strongly rational and finitely based.
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Starting point: the ball of radius 1

B0 = MI (1)

=⇒

B1 = MI (1324)

Geometrical construction:

1 inflation−−−−−→ 1234
transposition−−−−−−−→ 1324
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Starting point: the ball of radius 1

Theorem
1 B1 = MI (1324) (one reduced generating permutation);
2 π ∈ B1 ⇐⇒ π avoids 321, 2143, 2413, 3142;
3 the generating function of B1 is:

F (x) =
∑
n≥0

fnx
n =

1− 3x + 4x2 − x3

(1− x)4
,

where fn =
(n+3

3

)
− 2
(n+2

2

)
+
(n+1

1

)
+
(n+0

0

)
[compositions of n].
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General case: Bk

Corollary
Let k ≥ 1.

1 There exist N = N(k) reduced permutations α(1), . . . , α(N) of length
3k + 1, each at distance k from the identity, such that:

Bk =
N⋃

j=1

MI (α(j)).

[We call α(1), . . . , α(N) the generating permutations of Bk ];
2 the generating permutations of Bk are exactly the maximal reduced

permutations of BK ;
3 Bk is strongly rational and finitely-based (via geometric grid classes);
4 each permutation of its basis has length at most 3k + 1.

[easy bound 3k + 2]
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Cheyne Homberger, Vincent Vatter, "On the effective and automatic
enumeration of polynomial permutation classes", 2016.

More general approach using peg permutation classes;
algorithm for enumerating any permutation class with polynomial
enumeration from a structural description (special case: Bk).

Open problems (still a lot of work...)
1 Enumeration of the generating permutations of Bk .
2 Better understanding of the basis permutations (enumeration,

length,...).
3 Use this approach to analyze other genomic distances (reversal,

delete-insertion,...).
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A special case: the prefix-transposition distance

Block prefix-transposition:

π1π2 · · ·πj−1 πjπj+1 · · ·πl−1 πl · · ·πn

⇓

πjπj+1 · · ·πl−1 π1π2 · · ·πj−1 πl · · ·πn.

("Sorting by prefix transpositions", Dias, Meidanis, 2002)

Bpre
1

Bpre
1 = MI (213);

π ∈ Bpre
1 ⇐⇒ π avoids 321, 132.
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Generating permutations

Corollary
For k ≥ 1, the generating permutations of Bpre

k are exactly the reduced
permutations of length 2k + 1 and distance k from the identity.

Remark
The inductive construction gives distinct generating permutations.

Let gk be the number of generating permutations of Bpre
k :

Bpre
1 = MI (213) =⇒ g1 = 1;

gk =
(2k
2

)
· gk−1 =

∏k
i=1
(2i

i

)
= (2k)!

2k , for k ≥ 2.
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Basis permutations

Theorem
Every permutation of the basis of Bpre

k has length at most 2k + 1.

Easy bound 2k + 2 as in the general case (2k + 1 tricky).

Example
Bpre
2 = MI (32415, 41325, 31425, 24135, 24315, 42135);

π ∈ Bpre
2 ⇐⇒ π avoids the patterns:

1432, 2143, 4321
13524, 14253, 24351, 25314, 25413,
35142, 35214, 35241, 41352, 42513,
42531, 43152, 51324, 52413, 53142.
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