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The problem
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Ωn = {x} x = (x1, . . . , xn), |x | :=
∑

i xi , xi ∈ N

←− random vector
of integers

µn,m(x) = 1
Z

∏n
i=1 f i (xi )× δ|x |,m

←− completely independent:
the problem trivialises!←− NOT completely independent
(a single linear constraint)
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µn,m(x) = 1
Z
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i=1 f i (xi )× δ|x |,m

←− completely independent:
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(a single linear constraint)

Problem: Assume that sampling from each distrib. fi costs O(1).
Find an algorithm that samples from the distribution µn,m
in average linear time.
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Ωn = {x} x = (x1, . . . , xn), |x | :=
∑

i xi , xi ∈ N ←− random vector
of integers

µn,m(x) = 1
Z

∏n
i=1 f i (xi )× δ|x |,m

←− completely independent:
the problem trivialises!

←− NOT completely independent
(a single linear constraint)

↑
variables are identically distributed:

doable by using permutation symmetry [L. Devroye, 2012]

Problem: Assume that sampling from each distrib. fi costs O(1).
Find an algorithm that samples from the distribution µn,m
in average linear time.
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Our solution
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g(x)

x = (x1, . . . , xn) ∈ Nn, µn,m(x) = 1
Z

∏n
i=1 fi (xi )× δ|x |,m

Our solution: positive decomposition. Assume that there exists

g(x) ∈ {Bernb,Poiss,Geomb}, and {qi (s)}1≤i≤n;s∈N real positive,

such that fi (x) =
∑

s qi (s)g∗s(x). Then our new algorithm does it!
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The new algorithm in a nutshell

Our new trick is based on the following ideas:

I Rejection algorithms have an extra factor in their complexity,

on the scale of the inverse of the acceptance rate. In order to

have the optimal complexity scaling, you need the average

acceptance rate not to scale with the size n.

I Positive decomposition gives fi (x) =
∑

s qi (s)g∗s(x).
As a result the measure µn,m(x) = 1

Z

∏n
i=1 fi (xi )× δ|x |,m

is a marginal of a measure in two sets of variables:

µn,m(x , s) = 1
Z

∏n
i=1

(
qi (si ) g

∗si (xi )
)
× δ|x |,m.

I You can �rst sample s, with measure µ1(s) =
∏n

i=1 qi (si ),
then accept this vector s with rate a(s) ∝ g∗|s|(m),
and �nally sample x with measure µ2(x | s) =

∏n
i=1 g

∗si (xi ).

I The acceptance rate is high because, although

g∗|s|(m) = O(n−
1

2 ), we have g∗|s|(m)/maxN(g∗N(m)) = Θ(1).

Andrea Sportiello and Frédérique Bassino Exact sampling of sum-constrained random variables



We need something di�erent. . .

Devroye uses the permutation symmetry of the random variables,

and samples �rst the total number of xi 's equal to any given y
(with a rejection scheme), then their reordering.

This is troublesome (use of �oat approximations for multinomial

coe�cients, need for extra tricks if the fi 's do not have �nite

support,. . . ), and, most importantly, cannot be done here,

as the variables are not identically distributed. . .
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The obvious rejection scheme

A �rst algorithm is obtained by neglecting the linear global constraint.

Assume (as usual) that m =
∑

i E[fi ] and σ
2 :=

∑
i Var[fi ] are Θ(n).

Up to a Lagrange multiplier, we can assume w.l.o.g. that E(|x |) = m.

This `Boltzmann sampling' rejection algorithm would give:

Algorithm : Naïve rejection sampling complexity ∼ n3/2

begin

repeat

|x | = 0;

for i ← 1 to n ← complexity ∼ n;do

xi ⇐ fi ; |x |+=xi ;

until |x | = m ← complexity ∼
√
n;

return (x1, . . . , xn)

end
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Shannon complexity bound

We have seen that the naïve algorithm has complexity ∼ n
3

2 .

This seems bad. But how bad exactly? How good can we possibly do?

Let us try to determine the intrinsic minimal complexity of this problem.

As we have seen in Olivier's talk, the time complexity is de�ned

only up to a multiplicative constant, while for the random-bit

complexity also the overall constants do matter.

Of course, the second one is a lower bound to the �rst one.

The intrinsic minimal random-bit complexity of an exact sampling

problem is given by the Shannon entropy of the associated measure:

S [µ] = −
∑
x∈Ωn

µ(x) lnµ(x)
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Shannon complexity bound

Simple fact 1: if x = (x1, . . . , xn) and µiid(x) = f1(x1) · · · fn(xn),

S [µiid] =
∑
i

S [fi ]

Simple fact 2: if also p(s) = P(|x | = s) and µs(x) =
µiid(x)

p(s)
· δ|x |,s ,

S [µiid]− S [p] =
∑
s

p(s)S [µs ] = E(S [µs ])

A bit more subtle: Suppose that Var[p] = Θ(n), and p has the

same value for mode and average, s∗ = Ep(s) = argmax(p(s)).
Then E(S [µs ]) ≤ S [µs∗ ], and in turns

S [µiid]− S [p] ≤ S [µs∗ ] ≤ S [µiid]

so that

S [µs∗ ] =

∑
i

S [fi ]

∑
i

S [fi ] + Θ(ln n)

������9

our complexity
goal is linear
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The mother of all algorithms
for the linear-time exact sampling

of sum-constrained random variables

Do we know cases in which linearity is achievable

by a conceptually-simple algorithm?

Yes! You just saw this in Olivier's talk! Call this the BBHL algorithm.

The problem of uniformly sampling strings in {•, ◦}n
with #{•} = k and #{◦} = n − k is solved by the BBHL algo,

with linear time complexity and optimal random-bit complexity.

I BBHL[n,m] solves the problem for

µn,m(x) = 1
Z

∏
i Bernb(xi )× δ|x |,m, with b = m

n ∈ ]0, 1[

I BBHL[m + n − 1,m] solves the problem for

µn,m(x) = 1
Z

∏
i Geomb(xi )× δ|x |,m, with b = m

n ∈ ]0,+∞[

Very good, but this is only for i.i.d. cases. . .
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BBHL optimal shu�ing: a reminder

Algorithm : BBHL shu�ing algorithm

begin

a = k , b = n − k , i = 0;

repeat

i ++;
νi ←− Bernβ ;

if νi = 1 then a -- else b --

until a < 0 or b < 0 complexity ∼ n;
if a < 0 then ν̄ = 0 else ν̄ = 1;

for j ← i to n do

νj = ν̄;
h←− RndIntj ;

swap νj and νh complexity ∼
√
n ln n;

return ν

end
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The rejection paradigm

Recall the naïve rejection algorithm:

You want to do exact sampling for µ(x),
when µ(x) ∝ µ0(x)a(x), with a(x) ∈ [0, 1],

supposing that you know how to sample from µ0

Algorithm : Rejection sampling T [µ] ∼ T [µ0]E(a(x))−1

begin

repeat

x ⇐ µ0 ; ← complexity T [µ0];
α ⇐ Berna(x);

until α = 1 ← complexity E(a(x))−1;
return x

end
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The rejection paradigm for decomposed measures

Now assume µ(x) ∝
∑

y
µ1(y)µ2(x | y) a(y), with a(y) ∈ [0, 1],

supposing that you know how to sample from µ1, and µ2(· | y)

Algorithm : Rejection sampling for decomposed measures

begin

repeat

y ⇐ µ1 ; ← sample a tentative y with µ1;
α ⇐ Berna(y);

until α = 1 ← accept y with rate a(y);
x ⇐ µ2(· | y) ; ← sample x with µ2( · |y);
return x

end

T =

∑
y
µ1(y)

(
T1(y) + a(y)T2(y)

)∑
y
µ1(y)a(y)

=
E(T1 + aT2)

E(a)
≤ Tmax

1

E(a)
+Tmax

2
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Positive decomposition provides a decomposed measure

Positive decomposition tells that, for all i ,
fi (x) =

∑
s qi (s)g∗s(x), with qi (s) ≥ 0.

From the normalisation of the fi 's and of g ,
it follows that also the qi (s) are probability distributions.

As a result the measure µn,m(x) = 1
Z

∏n
i=1 fi (xi )× δ|x |,m

is a marginal of a measure in two sets of variables:

µn,m(x , s) = 1
Z

∏n
i=1

(
qi (si ) g

∗si (xi )
)
× δ|x |,m.

This is exactly as in a decomposed measure, with correspondence
sample s with measure µ1(s) µ1(s) =

∏n
i=1 qi (si )

accept s with rate a(s) a(s) ∝ g∗|s|(m)
sample x with measure µ2(x | s) µ2(x | s) =

∏n
i=1 g

∗si (xi )

Note: although µ1 and µ2 depend on the vector s,

the rate a only depends on |s| =
∑

i si .
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Increasing the acceptance rate

The crucial point is that the decomposition

allows to increase the acceptance rate!

In the `ordinary' rejection scheme, you accept x i� a probabilistic

event occurs (in our case, |x | = m). If this probability is

intrinsically small (in our case, Θ(n−1/2)), there is nothing you can do.

In the rejection scheme for decomposed measures, the rate a(s) is

de�ned up to a multiplicative factor, as long as maxs a(s) ≤ 1.

Here, the obvious choice for a(s) is a(s) = g∗|s|(m), which is O(n−
1

2 ).

However, we can push it up to a(s) =
g∗|s|(m)

maxN(g∗N(m))
.

As we will see, with this choice E(a(s)) = Θ(1).
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How to sample from Berna(s)

This idea is not su�cient by itself. Even if you know in advance

that, after maximisation, E(a(s)) = Θ(1), you still have a problem:

sampling a Bernoulli rnd var with parameter a(s) is di�cult

if you do not have an analytic expression for a(s).

It is not compulsory to have an analytic expression for a(s)
(just think to how the Monte Carlo algorithm:

x ⇐ Rnd[0, 1]; y ⇐ Rnd[0, 1]; return sign(1− x2 − y2)
samples Bernπ/4 without knowing π. . . )

however, it makes life easier, and in our case we have it for free

if we choose the base function g(x) for positive decomposition

in the list g(x) ∈ {Bernb,Poiss,Geomb}
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How to sample from Berna(s)

Example with Bernoulli (the other cases are similar)

(just write a(s) for a(s), with s = |s|)

a(s) =
g∗s(m)

maxN(g∗N(m))
=

bm(1− b)s−m
( s
m

)
maxN

(
bm(1− b)N−m

(N
m

))
The max is realised for N = N̄ := bm/bc, thus

a(s) = (1− b)s−N̄
s!(N̄ −m)!

N̄!(s −m)!

Good news 1: This is easily evaluated to high precision

(i.e., calculating d binary digits has complexity � 2d),

so that the average cost of Berna(s) is Θ(1).

Good news 2: For large m, and b = Θ(1), a(s) converges to an

un-normalised Gaussian centered around N̄, and of variance Θ(m).
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A rough evaluation of the complexity

Recall the basic steps in the rejection algo for our decomposed measure:

sample s with measure µ1(s) µ1(s) =
∏n

i=1 qi (si )

accept s with rate a(s) a(s) = g∗s(m)/g∗N̄(m)
sample x with measure µ2(x | s) µ2(x | s) =

∏n
i=1 g

∗si (xi )

and that this algorithm has complexity

T ≤ Tmax
1

Eµ1(a(s))
+ Tmax

2 where Tmax
1 ,Tmax

2 = Θ(n).

Under mild CLT hypotheses, the measure on s = |s| induced by µ1(s)
is a (normalised) Gaussian centered in N̄, with variance σ21n,

while a(s) is an un-normalised Gaussian, centered in N̄, with variance σ22n:

E(a) '
∫
dx 1√

2πσ2
1
n

exp
[
− x2

2n

(
1
σ2
1

+ 1
σ2
2

) ]
= σ2√

σ2
1

+σ2
2

T . Tmax
1

√
1 + (σ1/σ2)2 + Tmax

2 = Θ(n)
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The precise result

The three fundamental distributions

g∗sβ (r) =


Bern∗sβ (r) = βr (1− β)s−r

(s
r

)
β ∈ ]0, 1[

Poisss(r) = e−s s
r

r ! β = 0

Geom∗s−β(r) = |β|r (1 + |β|)−s−r
(s+r−1

r

)
β ∈ ]−∞, 0[

are such that g∗sα has a positive decomposition in gβ i� α ≤ β.

s s
−∞ 0 1

β

δx ,1BinoβPoissGeom−β

For the list of functions F = {f1, . . . , fn} in our measure,

call βmin(F) the smallest value of β
such that all the fi 's have a positive decomposition in gβ .
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The precise result

Then, the largest value for E(a)
that can be achieved within our framework is

amax(F) :=
√
1− βmin(F) ·

√ ∑
i E[fi ]∑

i Var[fi ]

s s
−∞ 0 1

β

δx ,1BinoβPoissGeom−β
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Examples of application

So, we have constructed our algorithm

for the linear-time exact sampling of sum-constrained random variables,

in the case in which they are not equally distributed.

However, you could just think:

�who cares about not-equally-distributed variables?

After all, every time I wanted to generate walks, trees, etc.,

I always wanted equally-distributed variables. . . �

The point is: examples of this sort

may be hidden beyond some smart bijection,

starting from more customary (and symmetric) problems.

This is well illustrated by two classical examples:

• Set partitions, and Stirling numbers of the second kind

• Permutations with m cycles, and Stirling numbers of the �rst kind
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Set partitions, and Stirling numbers of the second kind

Call Ssetn,m the ensemble of partitions of a set with n (labelled)

elements into m (unlabeled) non-empty subsets.

W.l.o.g. we can assume that the set has a total ordering.

Example, for (n,m) = (28, 9), and the set

{a, b, c , d , e, f , g , h, i , j , k , l ,m, n, o, p, q, r , s, t, u, v ,w , x , y , z , α, β}

consider the partition{
{a, g , t}, {b, d ,m, o, α}, {c , j , s, y}, {e, h, v}, {f , k , q}, {i , l , z},

{n, p, u}, {r , β}, {w , x}
}

Although the sets are not labeled, they are canonically ordered, e.g.

by their smallest element. As a result, we have a canonical

incidence matrix T , with Tij = 1 if the element j is in subset i .
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Set partitions, and Stirling numbers of the second kind

Call Ssetn,m the ensemble of partitions of a set with n (labelled)

elements into m (unlabeled) non-empty subsets.

W.l.o.g. we can assume that the set has a total ordering.

Example, for (n,m) = (28, 9), and the set

{a, b, c , d , e, f , g , h, i , j , k , l ,m, n, o, p, q, r , s, t, u, v ,w , x , y , z , α, β}

consider the partition{
{a, g , t}, {b, d ,m, o, α}, {c , j , s, y}, {e, h, v}, {f , k , q}, {i , l , z},

{n, p, u}, {r , β}, {w , x}
}

Although the sets are not labeled, they are canonically ordered, e.g.

by their smallest element. As a result, we have a canonical

incidence matrix T , with Tij = 1 if the element j is in subset i .
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Set partitions, and Stirling numbers of the second kind

{
{a, g , t}, {b, d ,m, o, α}, {c , j , s, y}, {e, h, v}, {f , k , q}, {i , l , z},

{n, p, u}, {r , β}, {w , x}
}

a b c d e f g h i j k l mn o p q r s t u v w x y z α β
1
2
3
4
5
6
7
8
9

Call backbone B(T ) the list of smallest elements in the subsets,

here B = {a, b, c , e, f , i , n, r ,w}.

The number of partitions T with

B(T ) = B is the trivial product:
∏m

y=1 y
cy , but the quantities cy

are linearly constrained:
∑

y cy = n −m.
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Set partitions, and Stirling numbers of the second kind

{
{a, g , t}, {b, d ,m, o, α}, {c , j , s, y}, {e, h, v}, {f , k , q}, {i , l , z},

{n, p, u}, {r , β}, {w , x}
}

a b c d e f g h i j k l mn o p q r s t u v w x y z α β
1
2
3
4
5
6
7
8
9

cy︷ ︸︸ ︷

Call backbone B(T ) the list of smallest elements in the subsets,

here B = {a, b, c , e, f , i , n, r ,w}. The number of partitions T with

B(T ) = B is the trivial product:
∏m

y=1 y
cy , but the quantities cy

are linearly constrained:
∑

y cy = n −m.
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Set partitions, and Stirling numbers of the second kind

As a result, sampling uniformly set partitions in Sn,m, which
bijectively coincides to sampling uniformly the tableaux T , boils

down to sampling the backbone B with the non-uniform measure

µn,m(c1, . . . , cm) ∝
∏m

y=1 y
cy × δ|c|,n−m

This is exactly our framework! Introduce an appropriate

Lagrange multiplier ω
∑

y cy , in order to have E(|c|) = n −m

(the good choice is the solution to the equation n
m = − ln(1−ω)

ω )

The functions fy (cy ) are Geomby (cy ), with by = ωy
n−ωy

Now, Geoma has a positive decomposition in terms of Bernb
Geoma(x) =

∑
s Geom a

a+b
(s) Binos,b(x)

Choosing for simplicity b = 1
2
, our algorithm works, with an

average acceptance rate E(a) =
√

e−θ−1+θ
2(eθ−1−θ)

(ω = 1− e−θ)
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.

Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)

Again, this is exactly our framework!

just with inhomogeneous Bernoulli variables,

instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.

Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)

Again, this is exactly our framework!

just with inhomogeneous Bernoulli variables,

instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.

Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(1)
)

Again, this is exactly our framework!

just with inhomogeneous Bernoulli variables,

instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.

Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(1)(2)

)

Again, this is exactly our framework!

just with inhomogeneous Bernoulli variables,

instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.

Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(1)(23)

)

Again, this is exactly our framework!

just with inhomogeneous Bernoulli variables,

instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.

Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(1)(23)(4)

)

Again, this is exactly our framework!

just with inhomogeneous Bernoulli variables,

instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.

Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(15)(23)(4)

)

Again, this is exactly our framework!

just with inhomogeneous Bernoulli variables,

instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.

Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(15)(263)(4)

)

Again, this is exactly our framework!

just with inhomogeneous Bernoulli variables,

instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.

Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(15)(263)(4)(7)

)

Again, this is exactly our framework!

just with inhomogeneous Bernoulli variables,

instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.

Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(15)(2638)(4)(7)

)

Again, this is exactly our framework!

just with inhomogeneous Bernoulli variables,

instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.

Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(15)(2638)(4)(7)

)
Call B(σ) = {0, 0, 1, 0, 1, 1, 0, 1},
the indicator function of �black rows�

of T (σ), the backbone of σ.

The number of σ's with backbone

B = (x1, . . . , xn) is
∏

y (y − 1)xy ,
and we must have |x | = m

Again, this is exactly our framework!

just with inhomogeneous Bernoulli variables,

instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.

Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(15)(2638)(4)(7)

)
Call B(σ) = {0, 0, 1, 0, 1, 1, 0, 1},
the indicator function of �black rows�

of T (σ), the backbone of σ.

The number of σ's with backbone

B = (x1, . . . , xn) is
∏

y (y − 1)xy ,
and we must have |x | = m

Again, this is exactly our framework!

just with inhomogeneous Bernoulli variables,

instead of inhomogeneous Geometric variables.
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Conclusions

Our problem was the exact sampling in linear time

from the measure µn,m(x) = 1
Z

∏n
i=1 fi (xi )× δ|x |,m

We have provided a solution to this problem in the case in which all

the fi 's have a positive decomposition in terms of the same function gβ

gβ(r) =


Bernβ(r) β ∈ ]0, 1[
Poiss1(r) β = 0

Geom−β(r) β ∈ ]−∞, 0[

In this case, the rejection scheme has a complexity related

to the average acceptance rate, which is

amax =
√
1− β ·

√
(E[f1] + · · ·+ E[fn])/(Var[f1] + · · ·+ Var[fn])

Applications include the uniform exact sampling of set partitions

with a prescribed number of subsets (and, in turns, minimal

automata), and of permutations with a prescribed number of cycles.
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