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Motivations

Lattice (d, k)-polytopes :
> appear in both theoritical and applied mathematical fields.
» have been studied on their properties as a function of d and k.
» have a central place in linear optimization.

However :

» practically few things are known in high dimension : enumeration ?
average number of vertices? ...

» exhaustive enumeration is prohibited due to combinatoric explosion.
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Why ?

> to investigate the average properties of large-sized objects.
> to study the average behavior of algorithms applied to them.

> a concrete statistic analysis on abstract structures.

How 7

» Ad-hoc methods.

» Combinatoric approach : recursive methods, Boltzmann samplers . ..

» Probabilistic approach : Markov chains.
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Random sampling

For fixed values of d and k, we are interested in the uniform distribution
over all the lattice (d, k)-polytopes.

What has been done?
Random samplers when d = 2.
» Random sampler of convex polygons in a disc [Devillers, Duchon,
Thomasse '14]
» Boltzmann sampler of convex polyominoes [Bodini, Duchon,
Jacquot, Mutafchiev '13]

Our contribution
Uniform random sampler in general dimension using Markov chain.
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Reminders on Markov Chains

What is Doudou doing ?

.

Example

The space of states
Q = {Sleep, Eat, Play}

(P)

| Sleep Eat  Play

Sleep | 0.9 0.05 0.05
Eat 0.7 0 0.3

Play 0.8 0 0.2
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Stationnary distribution

» Let P be the transition matrix which describes the transition rules
over .

> A stationnary distribution 7 is a distribution witch satisfies : 7 = 7P.

Example
A stationnary distribution for Doudou is :

m = [0.884 0.0442 0.0718].
Doudou spents 88.4% of his time sleeping !!

» Observing Doudou when it reaches its stationnary distribution means
we pick at random a state following the distribution 7.
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From a Markov chain to a random sampler

» We are interested in the uniform distribution over Q.

» Some conditions on the Markov chain garanties that the uniform
distribution is the unique stationnary distribution :

Irreducibility ~ » The underlying graph of the Markov chain is
connected.
> Every state is reacheable from any state in a finite
number of steps.
Aperiodicity  » All the states has a period 1, where the period of a
state x is the ged(return times on x).
> Note that an for an irreducible chain, every state has
the same period.

Symmetry For any two states x and y € Q, P(x,y) = P(y, x).
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From a Markov chain to a random sampler

Principle

1. Build a Markov chain which space of states 2 is the set of lattice
(d, k)-polytopes.

2. Set up a set of transition rules (local operations) which permits to
move along the chain and such that the stationnary distribution is
the uniform.

3. Run a long enough random walk on the chain until we are close
enough to the stationnary distribution.

4. End up the walk in a (d, k)-polytope.

We want to define the simplest set of transition rules, in order to later
facilitate proofs on the necessary length of the walk.



A Markov chain for (d, k)-polytopes

Q := set of lattice (d, k)-polytopes.

Let P € Q be a (d, k)-polytope with vertex set V.
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Transition rules

» sample at random a point x € [0, k.
» If x is contained in P but is not a vertex of it, we loop on P.

» If x is a vertex of P, then

> If Q = conv(V\{x}) is d-dimensional, the transition goes from
P to Q.

> Otherwise, we loop on P.
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> If x does not belong to P, then

» If VU {x} is precisely the vertex set of its convex hull, then the
transition goes from P to Q = conv(V U {x}).




Transition rules

> If x does not belong to P, then

» If VU {x} is precisely the vertex set of its convex hull, then the
transition goes from P to Q = conv(V U {x}).

> Otherwise, we loop on P.
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Resulting random sampler

Theorem
For all d > 2 and for all positive k, the Markov chain is irreducible,
aperiodic and symmetric.

Corollary

The resulting random sampler is a quasi-uniform random sampler for
d-dimensional (d, k)-polytopes.



Resulting random sampler
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Resulting random sampler

Sketch of proof
Symmetry Transition rules ensure that for any P and Q € €,

1

P(P,Q) =P(Q,P) = { gk“"’

—
<

Aperiodicity There always exists P € £ such that one can have a loop
on it (take P as a simplex).
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Resulting random sampler

Sketch of proof

Irreducibility 1. Any P € Q can be reduced as a simplex by a

succession of deletion move.

2. Given P € Q, there always exists a simplex S from
which after a succession of insertion move, we obtain
P.

3. Given a simplex S € Q, we can always perform a
succession of insertion and deletion to reach any
simplex S'.
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Mixing time

» For any positive ¢, the mixing time, tnix(g), of a Markov chain is
the amount of time the chain needs to reach a distribution whose
distance to the stationnary distribution is less than ¢.

» The diameter §, of the Markov chain’s diameter is a lower bound on
the mixing time.

An intuitive lower bound
1) Z Nmax - (d + 1)
~——

. -
largest number of vertices number of vertices of a simplex



Lower bounds on mixing time

dimension | Mmax | lower bound on tmix
d=2 | 12(£)"° + 0(k'3logk) (1) tmix > ck?/3
d>2 ai(d)rdT (2) tnix > ckd @

(1) Largest number of vertices of a polygon in [0, k]? [Acketa, Zunic '95,
Deza, Manoussakis, Onn '18].

(2) Largest number of faces of each dimension of a lattice polytope
contained in a d-dimensional disc of radius r and centered in 0 [Barany,
Larman '98].



Experimental results in dimension d = 2
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Conclusion

Uniform distribution over the (d, k)-polytopes.
Built a random sampler resulting from a Markov chain.

Obtain better bounds on mixing time using spectral gap analysis.

vV v vvY

Find out different transition rules that makes it easier to sample.



Thank you for your attention !
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