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Lattice Polytopes

Polytope
A polytope is a convex hull of a finite set of points in an euclidean space.

Lattice Polytope
A lattice polytope is a polytope such that its vertices have integer
coordinates.

Full dimension Lattice Polytope
A lattice polytope is called full-dimensional if it is a d-dimensional object
in Nd .
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Lattice (d , k)-polytope

▶ A lattice (d , k)-polytope is a lattice polytope contained in a
d-dimensional hypercube with side of length k.

Example d = 2, k = 2

Not exhaustive list !!
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Lattice (d , k)-polytope

▶ A lattice (d , k)-polytope is a lattice polytope contained in a
d-dimensional hypercube with side of length k.

Example d = 2, k = 2

Not exhaustive list !!
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Motivations

Lattice (d , k)-polytopes :
▶ appear in both theoritical and applied mathematical fields.
▶ have been studied on their properties as a function of d and k.
▶ have a central place in linear optimization.

However :
▶ practically few things are known in high dimension : enumeration ?

average number of vertices ? . . .
▶ exhaustive enumeration is prohibited due to combinatoric explosion.
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▶ appear in both theoritical and applied mathematical fields.
▶ have been studied on their properties as a function of d and k.
▶ have a central place in linear optimization.

However :
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average number of vertices ? . . .
▶ exhaustive enumeration is prohibited due to combinatoric explosion.
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Random sampling

Why ?
▶ to investigate the average properties of large-sized objects.
▶ to study the average behavior of algorithms applied to them.
▶ a concrete statistic analysis on abstract structures.

How ?
▶ Ad-hoc methods.
▶ Combinatoric approach : recursive methods, Boltzmann samplers . . .
▶ Probabilistic approach : Markov chains.
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Random sampling

Why ?
▶ to investigate the average properties of large-sized objects.
▶ to study the average behavior of algorithms applied to them.
▶ a concrete statistic analysis on abstract structures.

How ?
▶ Ad-hoc methods.
▶ Combinatoric approach : recursive methods, Boltzmann samplers . . .
▶ Probabilistic approach : Markov chains.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Random sampling

For fixed values of d and k, we are interested in the uniform distribution
over all the lattice (d , k)-polytopes.

What has been done ?
Random samplers when d = 2.

▶ Random sampler of convex polygons in a disc [Devillers, Duchon,
Thomasse ’14]

▶ Boltzmann sampler of convex polyominoes [Bodini, Duchon,
Jacquot, Mutafchiev ’13]

Our contribution
Uniform random sampler in general dimension using Markov chain.
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Uniform random sampler in general dimension using Markov chain.
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For fixed values of d and k, we are interested in the uniform distribution
over all the lattice (d , k)-polytopes.
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▶ Random sampler of convex polygons in a disc [Devillers, Duchon,
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Reminders on Markov Chains

What is Doudou doing ?

Sleep Eat

Play
0.05

0.05

0.9

0.7

0.30.8

0.2

Example

The space of states
Ω = {Sleep,Eat,Play}

(P)
Sleep Eat Play

Sleep 0.9 0.05 0.05
Eat 0.7 0 0.3
Play 0.8 0 0.2
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Stationnary distribution

▶ Let P be the transition matrix which describes the transition rules
over Ω.

▶ A stationnary distribution π is a distribution witch satisfies : π = πP.

Example
A stationnary distribution for Doudou is :

π = [0.884 0.0442 0.0718].

Doudou spents 88.4% of his time sleeping !!

▶ Observing Doudou when it reaches its stationnary distribution means
we pick at random a state following the distribution π.
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Stationnary distribution

▶ Let P be the transition matrix which describes the transition rules
over Ω.

▶ A stationnary distribution π is a distribution witch satisfies : π = πP.

Example
A stationnary distribution for Doudou is :

π = [0.884 0.0442 0.0718].

Doudou spents 88.4% of his time sleeping !!

▶ Observing Doudou when it reaches its stationnary distribution means
we pick at random a state following the distribution π.
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From a Markov chain to a random sampler

▶ We are interested in the uniform distribution over Ω.

▶ Some conditions on the Markov chain garanties that the uniform
distribution is the unique stationnary distribution :
Irreducibility ▶ The underlying graph of the Markov chain is

connected.
▶ Every state is reacheable from any state in a finite

number of steps.
Aperiodicity ▶ All the states has a period 1, where the period of a

state x is the gcd(return times on x).
▶ Note that an for an irreducible chain, every state has

the same period.
Symmetry For any two states x and y ∈ Ω, P(x , y) = P(y , x).
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From a Markov chain to a random sampler

▶ We are interested in the uniform distribution over Ω.
▶ Some conditions on the Markov chain garanties that the uniform

distribution is the unique stationnary distribution :

Irreducibility ▶ The underlying graph of the Markov chain is
connected.

▶ Every state is reacheable from any state in a finite
number of steps.

Aperiodicity ▶ All the states has a period 1, where the period of a
state x is the gcd(return times on x).

▶ Note that an for an irreducible chain, every state has
the same period.

Symmetry For any two states x and y ∈ Ω, P(x , y) = P(y , x).
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Irreducibility ▶ The underlying graph of the Markov chain is

connected.
▶ Every state is reacheable from any state in a finite

number of steps.

Aperiodicity ▶ All the states has a period 1, where the period of a
state x is the gcd(return times on x).
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the same period.
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▶ Some conditions on the Markov chain garanties that the uniform
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From a Markov chain to a random sampler

▶ We are interested in the uniform distribution over Ω.
▶ Some conditions on the Markov chain garanties that the uniform

distribution is the unique stationnary distribution :
Irreducibility ▶ The underlying graph of the Markov chain is

connected.
▶ Every state is reacheable from any state in a finite

number of steps.
Aperiodicity ▶ All the states has a period 1, where the period of a

state x is the gcd(return times on x).
▶ Note that an for an irreducible chain, every state has

the same period.
Symmetry For any two states x and y ∈ Ω, P(x , y) = P(y , x).
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From a Markov chain to a random sampler

Principle
1. Build a Markov chain which space of states Ω is the set of lattice

(d , k)-polytopes.

2. Set up a set of transition rules (local operations) which permits to
move along the chain and such that the stationnary distribution is
the uniform.

3. Run a long enough random walk on the chain until we are close
enough to the stationnary distribution.

4. End up the walk in a (d , k)-polytope.

We want to define the simplest set of transition rules, in order to later
facilitate proofs on the necessary length of the walk.
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move along the chain and such that the stationnary distribution is
the uniform.
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enough to the stationnary distribution.
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Principle
1. Build a Markov chain which space of states Ω is the set of lattice

(d , k)-polytopes.
2. Set up a set of transition rules (local operations) which permits to

move along the chain and such that the stationnary distribution is
the uniform.

3. Run a long enough random walk on the chain until we are close
enough to the stationnary distribution.

4. End up the walk in a (d , k)-polytope.

We want to define the simplest set of transition rules, in order to later
facilitate proofs on the necessary length of the walk.
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From a Markov chain to a random sampler

Principle
1. Build a Markov chain which space of states Ω is the set of lattice

(d , k)-polytopes.
2. Set up a set of transition rules (local operations) which permits to

move along the chain and such that the stationnary distribution is
the uniform.

3. Run a long enough random walk on the chain until we are close
enough to the stationnary distribution.

4. End up the walk in a (d , k)-polytope.

We want to define the simplest set of transition rules, in order to later
facilitate proofs on the necessary length of the walk.
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A Markov chain for (d , k)-polytopes

Ω := set of lattice (d , k)-polytopes.
Let P ∈ Ω be a (d , k)-polytope with vertex set V.
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Transition rules
▶ sample at random a point x ∈ [0, k]d .

▶ If x is contained in P but is not a vertex of it, we loop on P.

→

▶ If x is a vertex of P, then
▶ If Q = conv(V\{x}) is d-dimensional, the transition goes from

P to Q.

→

▶ Otherwise, we loop on P.

→
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Transition rules
▶ sample at random a point x ∈ [0, k]d .
▶ If x is contained in P but is not a vertex of it, we loop on P.

→

▶ If x is a vertex of P, then
▶ If Q = conv(V\{x}) is d-dimensional, the transition goes from

P to Q.

→

▶ Otherwise, we loop on P.

→
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▶ sample at random a point x ∈ [0, k]d .
▶ If x is contained in P but is not a vertex of it, we loop on P.

→

▶ If x is a vertex of P, then
▶ If Q = conv(V\{x}) is d-dimensional, the transition goes from

P to Q.

→

▶ Otherwise, we loop on P.

→
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▶ If x is contained in P but is not a vertex of it, we loop on P.
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P to Q.
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Transition rules

▶ If x does not belong to P, then

▶ If V ∪ {x} is precisely the vertex set of its convex hull, then the
transition goes from P to Q = conv(V ∪ {x}).

→

▶ Otherwise, we loop on P.

→ →
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Transition rules

▶ If x does not belong to P, then
▶ If V ∪ {x} is precisely the vertex set of its convex hull, then the

transition goes from P to Q = conv(V ∪ {x}).

→

▶ Otherwise, we loop on P.

→ →
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Transition rules

▶ If x does not belong to P, then
▶ If V ∪ {x} is precisely the vertex set of its convex hull, then the

transition goes from P to Q = conv(V ∪ {x}).

→

▶ Otherwise, we loop on P.

→ →
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Resulting random sampler

Theorem
For all d ≥ 2 and for all positive k, the Markov chain is irreducible,
aperiodic and symmetric.

Corollary
The resulting random sampler is a quasi-uniform random sampler for
d-dimensional (d , k)-polytopes.
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Resulting random sampler

Theorem
For all d ≥ 2 and for all positive k, the Markov chain is irreducible,
aperiodic and symmetric.

Corollary
The resulting random sampler is a quasi-uniform random sampler for
d-dimensional (d , k)-polytopes.
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Resulting random sampler

Sketch of proof
Symmetry Transition rules ensure that for any P and Q ∈ Ω,

P(P,Q) = P(Q,P) =

{
1

(k+1)d

0

→
←

Aperiodicity There always exists P ∈ Ω such that one can have a loop
on it (take P as a simplex).

→
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Resulting random sampler
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Symmetry Transition rules ensure that for any P and Q ∈ Ω,

P(P,Q) = P(Q,P) =
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1
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0

→
←

Aperiodicity There always exists P ∈ Ω such that one can have a loop
on it (take P as a simplex).
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Resulting random sampler

Sketch of proof
Irreducibility 1. Any P ∈ Ω can be reduced as a simplex by a

succession of deletion move.

2. Given P ∈ Ω, there always exists a simplex S from
which after a succession of insertion move, we obtain
P.

3. Given a simplex S ∈ Ω, we can always perform a
succession of insertion and deletion to reach any
simplex S ′.
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Resulting random sampler

Sketch of proof
Irreducibility 1. Any P ∈ Ω can be reduced as a simplex by a

succession of deletion move.
2. Given P ∈ Ω, there always exists a simplex S from

which after a succession of insertion move, we obtain
P.

3. Given a simplex S ∈ Ω, we can always perform a
succession of insertion and deletion to reach any
simplex S ′.
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Resulting random sampler

Sketch of proof
Irreducibility 1. Any P ∈ Ω can be reduced as a simplex by a

succession of deletion move.
2. Given P ∈ Ω, there always exists a simplex S from

which after a succession of insertion move, we obtain
P.

3. Given a simplex S ∈ Ω, we can always perform a
succession of insertion and deletion to reach any
simplex S ′.
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Mixing time

▶ For any positive ε, the mixing time, tmix(ε), of a Markov chain is
the amount of time the chain needs to reach a distribution whose
distance to the stationnary distribution is less than ε.

▶ The diameter δ, of the Markov chain’s diameter is a lower bound on
the mixing time.

An intuitive lower bound

δ ≥ nmax︸︷︷︸
largest number of vertices

− (d + 1)︸ ︷︷ ︸
number of vertices of a simplex

.
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▶ For any positive ε, the mixing time, tmix(ε), of a Markov chain is
the amount of time the chain needs to reach a distribution whose
distance to the stationnary distribution is less than ε.

▶ The diameter δ, of the Markov chain’s diameter is a lower bound on
the mixing time.
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largest number of vertices
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Lower bounds on mixing time

dimension nmax lower bound on tmix

d = 2 12
( k

2π
)2/3

+ O(k1/3 log k) (1) tmix ≥ ck2/3

d ≥ 2 c1(d)rd d−1
d+1 (2) tmix ≥ ckd d−1

d+1

(1) Largest number of vertices of a polygon in [0, k]2 [Acketa, Zunic ’95,
Deza, Manoussakis, Onn ’18].

(2) Largest number of faces of each dimension of a lattice polytope
contained in a d-dimensional disc of radius r and centered in 0 [Barany,
Larman ’98].
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Experimental results in dimension d = 2
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Conclusion

▶ Uniform distribution over the (d , k)-polytopes.
▶ Built a random sampler resulting from a Markov chain.
▶ Obtain better bounds on mixing time using spectral gap analysis.
▶ Find out different transition rules that makes it easier to sample.
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Thank you for your attention !
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