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The set-up

σ: permutation of {1, 2, . . . n}.
Descent set: D = {i ∈ [1, n − 1], σ(i) > σ(i + 1)}.
Goal: enumerate and generate uniformly at random permutations with a

given descent set.

Naive counting

Inclusion-exclusion formula: number of permutations with descent set D is∑
E={i1<i2...<ik}⊂Dc

(−1)|D
c |−|E|

(
n

n − ik , ik − ik−1, . . . , i2 − i1, i1

)

Practical problem: number of computations to perform. If n = 100,

|D| = 50 → 250 terms in the summation.
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Generating and counting

Alternating permutations [André 1879]. Exponential generating function∑
n

an
n!

tn = sec t + tan t

Other periodic patterns [Carlitz ’75, Mendes et al. ’10, Luck ’14].

Naive sampling

Number of alternating permutations of length n ∼ 4
π

(
2
π

)n+1
n!.

The rejection algorithm has exponential complexity ∼ π
4

(
π
2

)n+1
.

Goal

Introduce the density method to generate and enumerate. Alternative

approaches exist [Viennot ’79, Basset ’16] but our method also applies in

other contexts.
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The order polytope

Idea: the descent set induces a poset on {1, . . . n}.
For instance, if σ(1) < σ(2) and σ(2) > σ(3) we equip the set {1, 2, 3}
with the order ≺ defined by 1 ≺ 2, 3 ≺ 2.

Generate a random element of the associated order polytope

P = {(Y1,Y2,Y3) ∈ [0, 1]3,Y1 < Y2,Y3 < Y2}

Then recover the permutation from (Y1,Y2,Y3) by sorting: σ(i) = k if i is

the k-th smallest element in {Y1,Y2,Y3}

.

In the general case, we want to generate a sequence (Yi ) of reals ∈ [0, 1]

satisfying the order relation induced by the descent set.
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The density method: computing densities

To construct the (Yi ), we use the notion of density of a random variable.

f : R→ R+ is the density of X ∈ R if, for all reals a ≤ b,

P(X ∈ [a, b]) =

∫ b

a
f (x)dx

Define by induction the sequence of functions

fn(x) = 1.

If i ∈ D, fi (x) =
∫ x
0 fi+1(y)dy .

If i /∈ D, fi (x) =
∫ 1
x fi+1(y)dy .

Number of computations: O(n2)

.
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The density method: sampling in the polytope

Let Ui , 0 ≤ i ≤ n be iid, uniform on [0, 1].

Y1 has density proportional to f1: Y1 is the solution ∈ [0, 1] of

U1

∫ 1

0
f1(y)dy =

∫ Y1

0
f1(y)dy

Polynomial equation, the solution is Y1 = 0 if U1 = 0 and Y1 = 1 if

U1 = 1. In the general case, since U1 ∈ [0, 1], Y1 ∈ [0, 1].

Yi+1 has conditional density proportional to fi+1:

If i ∈ D, recall that fi (x) =
∫ x

0
fi+1(y)dy . Then

Ui+1fi (Yi ) =

∫ Yi+1

0

fi+1(y)dy

If i /∈ D, Ui+1fi (Yi ) =
∫ 1

Yi+1
fi+1(y)dy .
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The algorithm

Generate random variables (Yi ) as above.

Sort the (Yi ) to generate a random permutation.

Theorem

The algorithm generates a random, uniform permutation with descent set

D using O(n2) computations.

Computing the densities takes O(n2) computations, generating the (Yi )

takes O(n2) computations and sorting takes O(n log n) computations.

We have to show that the random permutation is uniform.
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Sketch of the proof

The density of Y1 is c1f1, where

c1 =
1∫ 1

0 f1(x)dx

Suppose for instance that 1 is a descent.

The density of Y2, conditional on Y1, is c2f21{Y2≤Y1}.

Since f1(x) =
∫ x
0 f2(y)dy ,

c2 =
1

f1(Y1)

By independence, the density of the sequence (Y1, . . .Yn) is the telescopic

product

c1f1(Y1)
f2(Y2)

f1(Y1)
. . .

fn(Yn)

fn−1(Yn−1)
× 1D = c11D
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Counting

Theorem (Enumeration)

The number of permutations with descent set D is

n!

∫ 1

0
f1(x)dx

Theorem (Monotonicity result)

Let B be the set of local extrema of the permutation. Let F (B) be the

number of permutations with set of local extrema B. Then
F : P({2, 3, . . . n − 1} → N is an increasing function.

In particular, we recover the fact that alternating permutations are the

most likely profile [De Bruijn ’70, Ehrenborg et al. ’02].
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Periodic descent set

Define fn by increasing induction. Let F (x , y) =
∑

n y
nfn(x). Then

∑
n≥0

an
n!

yn = 1 +

∫ 1

0
yF (x , y)dx

an: number of permutations of length n with the desired pattern.

If n is a descent (resp. an ascent), f ′n+1 = fn (resp f ′n+1 = −fn).

∂pF (x , y)

∂xp
= (−1)kypF (x , y)

where p is the period and k the number of ascents in a period.

Solve the equation using the boundary conditions.
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Further problems

Other problems on permutations: random generation and enumeration

when the sequence of ascents and descents is a word belonging to a

given set. Rational language: [Basset ’16]. More general questions?

The density method can be used for other problems of posets:

rectangular Young tableaux [Marchal ’16]
urn models and corners of triangular Young tableaux
[Banderier-Marchal-Wallner ’18]
Young tableaux with local decreases (our forthcoming talk)
permutations with algebraic language patterns (in progress)
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