On the Maximal Number of Leaves in Induced Subtrees of Series-Parallel Graphs

M. Abdenbi, A. Blondin Massé and A. Goupil

LaCIM Université du Québec à Montréal

> June 20, 2018 GASCom 2018

Abdenbi et al. (LaCIM, UQAM)

June 20, 2018

- 1. How This All Started
- 2. Graphs
- 3. Series-Parallel Graphs
- 4. Concluding Remarks

- 1. How This All Started
- 2. Graphs
- 3. Series-Parallel Graphs
- 4. Concluding Remarks

The Initial Question

Alain Goupil: Alexandre, if I give you n unit squares to build a (tree) polyomino, what is the maximum number of leaves that you can obtain?

Tree Polyominoes

Tree Polyominoes

Tree Polyominoes

Not a tree!

A tree with 4 leaves!

n	Example	ℓ	n	Example	l
1					
2			5		
3			6		
4					
			7		

n	Example	l	n	Example	ℓ
1		0	F		
2			9		
2					
3			6		
4			_		
	I	I	7		

n	Example	ℓ	n	Example	ℓ
1		0	F		
2		2	0		
3			6		
4					
			7		

n	Example	l	n	Example	ℓ
1		0	F		
2		2	0		
3		2	6		
4			7		

Leaf Function

▶ Let *T*(*n*) be the set of all tree polyominoes of *n* cells.
▶ Let

 $L_{\text{Squ}}(n) = \max\{\# \text{ of leaves of } P \mid P \in \mathcal{T}(n)\}.$

▶ (B. M., de Carufel, Goupil, Samson, 2017) Then

$$L_{\text{Squ}}(n) = \begin{cases} 0, & \text{if } n = 0, 1; \\ 2, & \text{if } n = 2; \\ n - 1, & \text{if } n = 3, 4, 5; \\ L_{\text{Squ}}(n - 4) + 2, & \text{if } n \ge 6. \end{cases}$$

▶ First values

Abdenbi et al. (LaCIM, UQAM)

June 20, 2018

Idea of the proof

- **Lower bound**: by construction;
- **Upper bound**: by minimum counter-example.

Other 2D Lattices

Abdenbi et al. (LaCIM, UQAM)

June 20, 2018

Cubic Lattice

- Clearly, the 2D lattices and cubic lattice seen before are particular cases of a more general problem;
- ► More precisely, those lattices are **infinite simple graphs**;
- Tree-like polyforms and polycubes correspond to subtrees of those graphs;
- What can be said about arbitrary finite graphs or even infinite graphs?
- Are there known results from the graph theoretical community about this more general problem?

- 1. How This All Started
- 2. Graphs
- 3. Series-Parallel Graphs
- 4. Concluding Remarks

Problem Definition

- Let G = (V, E) be a (finite) simple graph;
- ► Let *T*(*i*) be the set of all **induced subtrees** of *G* having *i* vertices;

Not an induced subtree!

- ► A induced subtree is called **fully leafed** if it has the maximum number of leaves for a fixed size *i*.
- ▶ This problem does not seem to have been studied before...

Abdenbi et al. (LaCIM, UQAM)

June 20, 2018

Spanning Trees

- (Payan et al., 1984) MLST = Maximum Leaf Spanning Tree;
- ► (Garey and Johnson, 1979) MLST is **NP-hard**;
- (Boukerche, Cheng and Linus, 2005) Application of MLST to energy-aware networks;
- The problem of identifying fully leafed induced subtrees is also NP-hard;
- However, replacing "spanning tree" by "induced subtree" yields an additional complexity with respect to parametrized algorithms.

Theorem (B.M., de Carufel, Goupil, Lapointe, Nadeau, Vandomme, 2018)

Given a simple graph G, the problem of deciding whether there exists an induced subtree of G with i vertices and ℓ leaves is **NP-complete**.

Proof.

Reduction to the **Independent Set** problem, by adding a **universal vertex** to the graph.

Leaf Function of Usual Families (1/2)

Complete graph:

$$L_{K_n}(i) = \begin{cases} 0, & \text{if } i = 0, 1; \\ 2, & \text{if } i = 2; \\ -\infty, & \text{if } 3 \le i \le n; \end{cases}$$

Cycle graph:

$$L_{\mathcal{C}_n}(i) = \begin{cases} 0, & \text{if } i = 0, 1; \\ 2, & \text{if } 2 \le i < n; \\ -\infty, & \text{if } i = n. \end{cases}$$

Leaf Function of Usual Families (2/2)

Wheel graph:

$$L_{W_n}(i) = \begin{cases} 0, & \text{if } i = 0, 1; \\ 2, & \text{if } i = 2; \\ i - 1, & \text{if } 3 \le i \le \lfloor \frac{n}{2} \rfloor + 1; \\ 2, & \text{if } \lfloor \frac{n}{2} \rfloor + 2 \le i \le n - 1; \\ -\infty, & \text{if } n \le i \le n + 1. \end{cases}$$

Complete bipartite graph:

$$L_{K_{p,q}}(i) = \begin{cases} 0, & \text{if } i = 0, 1; \\ 2, & \text{if } i = 2; \\ i - 1, & \text{if } 3 \le i \le \max(p, q) + 1; \\ -\infty, & \text{if } \max(p, q) + 2 \le i \le p + q. \end{cases}$$

The Hypercube Graph

- Highly symmetric;
- But surprisingly more intricate;
- ► A related (hard) problem is called **snake-in-the-box**;
- ▶ Obtained with a **branch-and-bound** algorithm;
- ▶ Some symmetries have been exploited, but not all!

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$L_{Q_{2}}(n)$	0	0	2	2	*													
$L_{Q_{3}}(n)$	0	0	2	2	3	2	*	*	*									
$L_{Q_A}(n)$	0	0	2	2	3	4	3	4	3	4	*	*	*	*	*	*	*	
$L_{Q_5}(n)$	0	0	2	2	3	4	5	4	5	6	6	6	7	7	7	8	8	8
$L_{Q_6}(n)$	0	0	2	2	3	4	5	6	5	6	7	8	8	9	9	10	10	11
'n	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	
$L_{Q_{5}}(n)$	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*			
$L_{Q_6}(n)$	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	18	*	

- The problem becomes polynomial when the considered graph is itself a tree;
- ▶ Note: In that case, subtree = induced subtree.

Theorem (B.M., de Carufel, Goupil, Lapointe, Nadeau, Vandomme, 2018)

Let T = (V, E) be an undirected tree with $n \ge 2$ vertices. Then L_T can be computed in $\mathcal{O}(n^3\Delta)$ time and $\mathcal{O}(n^2)$ space where Δ denotes the **maximal degree** of a vertex in T.

Parametrized Algorithms

- ▶ In general, the problem is hard;
- ► In the case of **trees**, it becomes **polynomial**;
- This suggests that a parametrized algorithm could be polynomial assuming that a parameter called the tree-width of the graph is bounded.
- Intuitively, tree-width indicates how "close" to a tree any given graph is;
- ► Graphs of tree-width equal to 1: series-parallel graphs!

- 1. How This All Started
- 2. Graphs
- 3. Series-Parallel Graphs
- 4. Concluding Remarks

Series-Parallel Graphs

- (MacMahon, 1890) Number of SP-graphs of given size (A000084).
- (Riordan and Shannon, 1942) Provided a formal proof of the recursive formula given by MacMahon.

Abdenbi et al. (LaCIM, UQAM)

June 20, 2018

- ► Series-parallel graphs are built **recursively**;
- Is it possible that fully leafed induced subtrees are obtained by "merging" two fully leafed induced subtrees?
- The basic idea is **correct**;
- ► However, we have to take into account **special induced subforests**...

Induced Subtrees and Induced Subforests

Leaf Function of SP Graphs

It only remains to write **all possible cases**:

- With respect to the two type of compositions: series/parallel;
- ▶ With respect to the following **four** cases:
 - ▶ Both *s* and *t* are included in the induced subtree;
 - Only *s* is included in the induced subtree;
 - Only *t* is included in the induced subtree;
 - Neither *s* nor *t* is included in the induced subtree;
- ► We must also keep track of the **proximity** of the subtrees to either s or t to prevent the creation of **cycles**.

Enriched Leaf Function (1/2)

Let G = (V, E, s, t) be an SP-graph and i an integer, with $2 \leq i \leq |G|$. We denote by $L(G, i, \sigma, \tau)$ the maximum number of leaves that can be realized by an induced subtree T of **size** i of G, where the parameters σ and τ are defined by

$$\sigma = \begin{cases} 0, & \text{if } s \in T, \deg_T(s) > 1; \\ 1, & \text{if } s \in T, \deg_T(s) = 1; \\ 2, & \text{if } s \notin T, |N(s) \cap T| \neq 0; \\ 3, & \text{if } s \notin T, |N(s) \cap T| = 0, \end{cases}$$

and

$$\tau = \begin{cases} 0, & \text{if } t \in T, \deg_T(t) > 1; \\ 1, & \text{if } t \in T, \deg_T(t) = 1; \\ 2, & \text{if } t \notin T, |N(t) \cap T| \neq 0; \\ 3, & \text{if } t \notin T, |N(t) \cap T| = 0. \end{cases}$$

Similarly, let $F(G, i, \sigma, \tau)$ be the maximum number of leaves that can be realized by an **induced subforest** of size *i* whose two connected components T_s and T_t containing *s* and *t* respectively are such that

$$\sigma = \begin{cases} 0, & \text{if } \deg_{T_s}(s) > 1; \\ 1, & \text{if } \deg_{T_s}(s) = 1, \end{cases}$$

and

$$\tau = \begin{cases} 0, & \text{if } \deg_{T_t}(t) > 1; \\ 1, & \text{if } \deg_{T_t}(t) = 1. \end{cases}$$

► Let

 ${\rm DistN}=\{2,3\}\times\{2,3\}\cup\{0,1\}\times\{3\}\cup\{3\}\times\{0,1\},$

- ► ⇒ Indicates that the subtrees are distant enough so that no cycle can ever be "created" by the composition;
- For (a, b) ∈ {0, 1} × {0, 1}, let ℓ be the leaf loss function defined by ℓ(a, b) = a + b
- ► ⇒ Indicates the number of leaves that are lost after a composition.

Series Composition, tree case (1/2)

(ST1) T is included in G_1 .

$$ST_1(G, i, \sigma, \tau) = L(G_1, i, \sigma, \tau_1),$$

where

$$\tau = \begin{cases} 2, & \text{if } \{s, t\} \in E_2 \text{ and } \tau_1 \in \{0, 1\}; \\ 3, & \text{otherwise.} \end{cases}$$

(ST2) T is included in G_2 .

$$ST_2(G, i, \sigma, \tau) = L(G_2, i, \sigma_2, \tau)$$

where

$$\sigma = \begin{cases} 2, & \text{if } \{s,t\} \in E_1 \text{ and } \sigma_2 \in \{0,1\}; \\ 3, & \text{otherwise.} \end{cases}$$

(ST3) T is included neither in G_1 nor G_2 .

$$ST_3(G, i, \sigma, \tau) = \max_{\substack{(i_1, i_2) \vdash i + 1 \\ \tau_1, \sigma_2 \in \{0, 1\}}} \{ L(G_1, i_1, \sigma, \tau_1) + L(G_2, i_2, \sigma_2, \tau) - \ell(\tau_1, \sigma_2) \}$$

Abdenbi et al. (LaCIM, UQAM)

June 20, 2018

29 / 35

Series Composition, tree case (2/2)

Combining the three cases, we have

$$L(G, i, \sigma, \tau) = \max_{j \in \{1, 2, 3\}} \{ ST_j(G, i, \sigma, \tau) \}$$
(1)

Series Composition, forest case (1/2)

(SF1) T_s is included in G_1 and T_t is included in G_2 .

$$SF_1(G, i, \sigma, \tau) = \max_{\substack{(i_1, i_2) \vdash i \\ (\tau_1, \sigma_2) \in \text{DistN}}} \{ L(G_1, i_1, \sigma, \tau_1) + L(G_2, i_2, \sigma_2, \tau) \}$$

(SF2) T_s sticks out of G_1 in G_2 and T_t is included in G_2 .

$$SF_2(G, i, \sigma, \tau) = \max_{\substack{(i_1, i_2) \vdash i+1 \\ \tau_1, \sigma_2 \in \{0, 1\}}} \{ L(G_1, i_1, \sigma, \tau_1) + F(G_2, i_2, \sigma_2, \tau) - \ell(\tau_1, \sigma_2) \}$$

(SF3) T_s is included in G_1 and T_t sticks out of G_2 in G_1 .

$$SF_3(G, i, \sigma, \tau) = \max_{\substack{(i_1, i_2) \vdash i+1\\\tau_1, \sigma_2 \in \{0, 1\}}} \{F(G_1, i_1, \sigma, \tau_1) + L(G_2, i_2, \sigma_2, \tau) - \ell(\tau_1, \sigma_2)\}$$

Combining all three cases, we obtain the expression

$$F(G, i, \sigma, \tau) = \max_{j=1,2,3} \{ SF_j(G_1 \bowtie G_2, i, \sigma, \tau) \}$$
(2)

Parallel Composition and Basic Cases

- ► Similar to the **series composition** case;
- ▶ More cases in particular in the case of forest cases;
- ► See the **proceedings** for the formulas (too many cases...);
- ► The basic cases are **easy**;

- 1. How This All Started
- 2. Graphs
- 3. Series-Parallel Graphs
- 4. Concluding Remarks

Concluding Remarks

- ► The case of **bounded tree-width**?
- ► Taking into account the graph's **automorphism group**?
- Application to **mathematical chemistry**;
- Our recursive formulas can "easily" be extended to count and generate all fully leafed induced subtrees;
- Link with **species theory**?