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The Initial Question

Alain Goupil: Alexandre, if I give you n unit squares to
build a (tree) polyomino, what is the maximum number of
leaves that you can obtain?
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Tree Polyominoes

Not a tree! A tree with 4 leaves!
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Leaf Function

I Let T (n) be the set of all tree polyominoes of n cells.

I Let

LSqu(n) = max{# of leaves of P | P ∈ T (n)}.

I (B. M., de Carufel, Goupil, Samson, 2017) Then

LSqu(n) =





0, if n = 0, 1;

2, if n = 2;

n− 1, if n = 3, 4, 5;

LSqu(n− 4) + 2, if n ≥ 6.

I First values

n 0 1 2 3 4 5 6 7 8 9 10 11 · · ·
LSqu(n) 0 0 2 2 3 4 4 4 5 6 6 6 · · ·
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Idea of the proof

(a) (b)

(c) (d)

(e) (f) (g)

(h) (i)

Figure 2: Fully leafed tree-like polyominoes of size (a) 2, (b) 3, (c) 4 and (d)
5. The images (e), (f), (g), (h) and (i) depict the five cases of Lemma 3.3 (gray
cells are removed).

Proof. It is easy to prove by induction that for any k � 2, `squ(k+i) � `squ(k)+
�`squ(i), where i 2 {1, 3, 4}. Therefore,

n1(T ) > `squ(n(T )), by assumption,

= `squ(n(T 0) + i), by definition of T 0,

� `squ(n(T 0)) + �`squ(i), by the observation above,

� Lsqu(n(T 0)) + �`squ(i), by minimality of n(T ),

� n1(T
0) + �`squ(i), by definition of Lsqu,

concluding the proof.

We are now ready to prove that the family {Tn | n � 2} is maximal.

Lemma 3.3. For all n � 2, Lsqu(n)  `squ(n).

Proof. Suppose, by contradiction, that T is a tree-like polyomino of minimal
size such that n1(T ) > `squ(n(T )). We first show that all vertices of T of depth
1 have degree 3 or 4. Arguing by contradiction, assume that there exists a vertex
u1 of T such that depthT (u1) = 1 and degT (u1) = 2. Let T 0 be the tree-like
polyomino obtained from T by removing the leaf adjacent to u1 (see Figure 2(e)).
Then n(T 0) = n(T )� 1 and n1(T

0) = n1(T ), contradicting Lemma 3.2.
Now, we show that T cannot have a vertex of depth 2. Again by contra-

diction, assume that such a vertex u2 exists. Clearly, degT (u2) 6= 4, otherwise
u2 would have a neighbor of depth 1 and degree 2, which was just shown to
be impossible. If degT (u2) = 3, then we are either in case (f) or (g) of Fig-
ure 2. In each case, let T 0 be the tree-like polyomino obtained by removing the
four gray cells. Then n(T 0) = n(T ) � 4 and n1(T

0) = n1(T ) � 2, contradicting
Lemma 3.2. Finally, if degT (u2) = 2, then either (h) or (i) of Figure 2 holds,
leading to a contradiction with Lemma 3.2 when removing the gray cells. Since
every tree-like polyomino of size larger than 6 has at least one vertex of depth
2, the proof is completed by exhaustive inspection of all tree-like polyominoes
of size at most 6.

5

I Lower bound: by construction;

I Upper bound: by minimum counter-example.
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Other 2D Lattices

Polyominoes Polyhexes Polyiamonds

(a) T

$

(b) I(T )

$

(c) �squ(T )

Figure 8: The cross map �squ for tree-like polyominoes

new empty column. We obtain a disconnected set of cells I(T ) with nearest
neighbours at distance two as shown in Figure 8b). Cross production: Fill
each empty unit square adjacent to a cell of I(T ) so that each cell of I(T ) has
now degree 4. This new set of cells is connected and forms a saturated tree-like
polyomino of size 4k+1 as shown in Figure 8c). �squ(T ) is the sequence of these
two transformations starting from T and we call it the cross map. It is obvious
that �squ in invertible i.e. starting from any saturated tree-like polyomino S of
size 4k+1, we can erase from S all cells of degree 1 and 2 and then remove empty
columns and rows to obtain the corresponding tree-like polyomino ��1

squ(S) of
size k. The map �squ is thus a bijection.

From an enumeration point of view, theorem 6.4 informs us that counting
saturated polyominoes of size 4k+1 is precisely the same as counting the number
of tree-like polyominoes of size k. It would be interesting to obtain a similar
information on fully leafed tree like polyominoes of other sizes which we do not
have at this time.

6.2 Saturated Tree-Like Polyhexes and Polyiamonds

Since the leaf functions of tree-like polyhexes and polyamonds are equal, the
bounding linear functions Lhex(n) and Ltri(n) are also equal:

Lhex(n) = Ltri(n) =
n + 2

2
and Lhex(n) = Ltri(n) =

n + 1

2
.

This implies that for k � 1, saturated polyhexes and polyiamonds T with k inner
cells have even size n(T ) = 2k and that their number of leaves is n1(T ) = k +1.

Proposition 6.5. Let T be a saturated tree-like polyhex or polyiamond and let
u be a vertex of depth one of T . Then degT (u) = 3

Proof. By contradiction. We know that any saturated tree-like polyhex or polyi-
amond T have size n(T ) = 2k, k > 0. Let L(n) denote the leaf function of
polyhexes and polyiamonds. Suppose that T contains one vertex v of depth one
such that deg(v) = 2. Since T is fully leafed, if T 0 is the result of removing

17

(a) (b) (c)

Figure 3: Fully leafed tree-like polyhexes.

contradicting the minimality of n(T ). Finally, assume that degT (u) = 3 and let
T 0 be the tree-like polyhex obtained from T by removing the two leaves adjacent
to u. Then n1(T

0) = n1(T ) � 1 > `hex(n(T )) � 1 = `hex(n(T 0)), contradicting
the minimality of n(T ).

Being the dual graph of the hexagonal lattice, the triangular lattice, denoted
Triang, presents similar properties. Recall that the triangular lattice is the
result of the tessellation of the plane with equilateral triangles. We choose
triangles of radius one with sides of length

p
3, one of which is horizontal, and

where center to center distance between adjacent triangles is one. If c 2 R is
the center of a triangular cell then the centers of its three adjacent triangles are

c + #»v✓, ✓ = 2k⇡/3, k = 0, 1, 2

where #»v✓ is the vector of length 1 and direction ✓. This defines a 3-adjacency
relation in Triang and connected sets of triangular cells under this relation are
called polyiamonds.

In the next theorem, the function `Triang(n) defined by the conditions

`Triang(n) =

(
2 if n = 2, 3,

`Triang(n� 2) + 1 if n � 4.
(3)

=
jn

2

k
+ 1

is proved to be the leaf function of fixed tree-like polyiamonds.

Theorem 4.2. For all integers n � 2, we have

`Triang(n) = LTriang(n).

Proof. As in theorem 4.1 we first prove that LTriang(n) � `Triang(n) by exhibit-
ing a family of fixed polyiamonds satisfying recurrence 3. We skip the details
which are very similar to those in the proof of theorem 4.1. We then show by
contradiction that LTriang  `Triang with an argument identical to the one in
theorem 4.1.
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(a) (b) (c) (d)

Figure 4: Fully leafed tree-like polyiamonds.

5 Fully Leafed Tree-Like Polycubes

The basic concepts introduced in Section 3 are now extended to tree-like poly-
cubes with additional considerations that complexify the arguments. Recall
that for all integers n � 2,

Lcub(n) = max{n1(T ) | T is a tree-like polycube of size n}.

A naive tentative to extrapolate the ratio Lsqu(n)/n from polyominoes to poly-
cubes leads to the ratio Lcub(n)/n = 4/6 as n tends to infinity. In this section,
we show that this first guess is false and that the optimal ratio is actually 28/41
and we exhibit the geometric objects that carry this unexpected ratio.

Define the function `cub(n) as follows:

`cub(n) =

8
>>><
>>>:

fcub(n) + 1, if n = 6, 7, 13, 19, 25;

fcub(n), if 2  n  40 and n 6= 6, 7, 13, 19, 25;

fcub(n� 41) + 28, if 41  n  81;

`cub(n� 41) + 28, if n � 82.

(4)

where fcub(n) =

8
><
>:

b(2n + 2)/3c, if 0  n  11;

b(2n + 3)/3c, if 12  n  27;

b(2n + 4)/3c, if 28  n  40.

(5)

The following key observations on `cub prove to be useful.

Proposition 5.1. The function `cub satisfies the following properties:
(i) For all positive integers k, the sequence (`cub(n + k) � `cub(n))n�0 is

bounded, so that the function �`cub : N! N defined by

�`cub(i) = lim inf
n!1

(`cub(n + i)� `cub(n))

is well-defined.
(ii) For any positive integers n and k, if `cub(n + k) � `cub(n) < �`cub(k),

then n 2 {6, 7, 13, 19, 25}.

Proof. (i). It is immediate that the sequence (`cub(n + k) � `cub(n))n�0 is
bounded by k. (ii) is immediate from (4) and (5).

8

LTri(n) = LHex =





0, if n = 0, 1;

2, if n = 2, 3;

LTri(n− 2) + 1, if n ≥ 4.
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Cubic Lattice

U15 U17

Figure 14: The two basic tree-like polycubes used in the bijection �.

�

7�!

Figure 15: The map � applied to a 4-tree (the arrows indicate the graft sites).

in translated copies Cx and Cy of the polycube depicted in Figure 16(a). These
copies Cx and Cy could share either a point or a segment, but they cannot share
a face, nor have intersecting cells. Hence, no cycle cannot exist in �(T ).

(ii) Notice that T has 3k+2 cells, where k of them are inner cells while 2k+2
are leaves. Also, T contains 3k + 1 edges, which corresponds to the number of
graft unions performed in the construction of �(T ). Finally, denote respectively
L15 = �(x) and I17 = �(y) the two images �(x), �(y) of the leaves x and he
inner cells y of T shown in Equation 10. Then

n(�(T )) = kn(L17) + (2k + 2)n(L15)� 2(3k + 1)

= 41k + 28,

n1(�(T )) = kn1(L17) + (2k + 2)n1(L15)� 2(3k + 1)

= k · 12 + (2k + 2) · 11� 2(3k + 1)

= 28k + 20,

so that �(T ) is indeed saturated.
(iii) The injectivity of � follows directly from the definition of � and the fact

that the sets 4Ti and STcubi are defined up to isometry. Indeed, if �(T ) = �(T 0)
for some T, T 0 2 4Ti, then T and T 0 must be isometric.

(iv) The proof that � is surjective follows from Lemma 6.12. More precisely,
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Generalization

I Clearly, the 2D lattices and cubic lattice seen before are
particular cases of a more general problem;

I More precisely, those lattices are infinite simple graphs;

I Tree-like polyforms and polycubes correspond to
subtrees of those graphs;

I What can be said about arbitrary finite graphs or even
infinite graphs?

I Are there known results from the graph theoretical
community about this more general problem?
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Problem Definition

I Let G = (V,E) be a (finite) simple graph;

I Let T (i) be the set of all induced subtrees of G having i
vertices;

6

(a) (b) (c)

Figure 1.2: Sous-arbres et sous-arbres induits. (a) et (b) sont des sous-arbres induits. (c)

Les sommets et les arêtes en bleus forment un sous-arbre, mais il n’est pas induit, car

les arêtes en pointillés manquent et si on les ajoutes on aura des cycles.

(a) (b) (c)

Figure 1.3: Ensembles indépendants (stable). Les sommets en bleus dans (a) et (b) sont

des stables. Les sommets en bleus dans (c) ne sont pas un stable car ils ne constituent

pas un graphe induit, il faut ajouter l’arête en pointillés.

nombre de sommets |S|. La figure 1.3 donne quelques exemples de stables.

Alexandre : “sont des stables”, “ne sont pas un stable” devraient être remplacés

par “forment des stables”, “ne forment pas un stable”

On associe à ces ensembles particuliers le problème de décision suivant,

Problème 1. (stable) (Bristow, 2011)

Étant donné un graphe G et un entier positif i, est-ce qu’un stable de taille

supérieure ou égale à i existe dans G ?

Ce problème est NP-complet d’après (Bristow, 2011) et on démontre plus bas,

Not an induced subtree!

I A induced subtree is called fully leafed if it has the
maximum number of leaves for a fixed size i.

I This problem does not seem to have been studied before...
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Spanning Trees

I (Payan et al., 1984) MLST = Maximum Leaf Spanning
Tree;

I (Garey and Johnson, 1979) MLST is NP-hard;

I (Boukerche, Cheng and Linus, 2005) Application of MLST
to energy-aware networks;

I The problem of identifying fully leafed induced
subtrees is also NP-hard;

I However, replacing “spanning tree” by “induced
subtree” yields an additional complexity with respect to
parametrized algorithms.
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Hardness of the Problem

Theorem (B.M., de Carufel, Goupil, Lapointe, Nadeau,
Vandomme, 2018)

Given a simple graph G, the problem of deciding whether there
exists an induced subtree of G with i vertices and ` leaves is
NP-complete.

Proof.
Reduction to the Independent Set problem, by adding a
universal vertex to the graph.
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Leaf Function of Usual Families (1/2)

Complete graph:

LKn(i) =





0, if i = 0, 1;

2, if i = 2;

−∞, if 3 ≤ i ≤ n;

Cycle graph:

LCn(i) =





0, if i = 0, 1;

2, if 2 ≤ i < n;

−∞, if i = n.
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Leaf Function of Usual Families (2/2)

Wheel graph:

LWn(i) =





0, if i = 0, 1;

2, if i = 2;

i− 1, if 3 ≤ i ≤ bn2 c+ 1;

2, if bn2 c+ 2 ≤ i ≤ n− 1;

−∞, if n ≤ i ≤ n+ 1.

Complete bipartite graph:

LKp,q(i) =





0, if i = 0, 1;

2, if i = 2;

i− 1, if 3 ≤ i ≤ max(p, q) + 1;

−∞, if max(p, q) + 2 ≤ i ≤ p+ q.
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The Hypercube Graph

I Highly symmetric;

I But surprisingly more intricate;

I A related (hard) problem is called snake-in-the-box;

I Obtained with a branch-and-bound algorithm;

I Some symmetries have been exploited, but not all!

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LQ2
(n) 0 0 2 2 *

LQ3
(n) 0 0 2 2 3 2 * * *

LQ4
(n) 0 0 2 2 3 4 3 4 3 4 * * * * * * *

LQ5
(n) 0 0 2 2 3 4 5 4 5 6 6 6 7 7 7 8 8 8

LQ6
(n) 0 0 2 2 3 4 5 6 5 6 7 8 8 9 9 10 10 11

n 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 . . .

LQ5
(n) * * * * * * * * * * * * * * *

LQ6
(n) 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 18 * . . .
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The Tree Case

I The problem becomes polynomial when the considered
graph is itself a tree;

I Note: In that case, subtree = induced subtree.

Theorem (B.M., de Carufel, Goupil, Lapointe, Nadeau,
Vandomme, 2018)

Let T = (V,E) be an undirected tree with n ≥ 2 vertices. Then
LT can be computed in O(n3∆) time and O(n2) space where ∆
denotes the maximal degree of a vertex in T .

Abdenbi et al. (LaCIM, UQAM) June 20, 2018 19 / 35



Parametrized Algorithms

I In general, the problem is hard;

I In the case of trees, it becomes polynomial;

I This suggests that a parametrized algorithm could be
polynomial assuming that a parameter called the
tree-width of the graph is bounded.

I Intuitively, tree-width indicates how “close” to a tree
any given graph is;

I Graphs of tree-width equal to 1: series-parallel graphs!
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Series-Parallel Graphs

s

t

(a)

s

t

(b)

s

t

(c)

s

t

(d)

s

t

(e)

I (MacMahon, 1890) Number of SP-graphs of given size
(A000084).

I (Riordan and Shannon, 1942) Provided a formal proof of
the recursive formula given by MacMahon.
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Recursive Optimality

I Series-parallel graphs are built recursively;

I Is it possible that fully leafed induced subtrees are
obtained by “merging” two fully leafed induced
subtrees?

I The basic idea is correct;

I However, we have to take into account special induced
subforests...
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Induced Subtrees and Induced Subforests
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Leaf Function of SP Graphs

It only remains to write all possible cases:

I With respect to the two type of compositions:
series/parallel;

I With respect to the following four cases:

I Both s and t are included in the induced subtree;

I Only s is included in the induced subtree;

I Only t is included in the induced subtree;

I Neither s nor t is included in the induced subtree;

I We must also keep track of the proximity of the subtrees
to either s or t to prevent the creation of cycles.
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Enriched Leaf Function (1/2)

Let G = (V,E, s, t) be an SP-graph and i an integer, with
2 ≤ i ≤ |G|. We denote by L(G, i, σ, τ) the maximum number of
leaves that can be realized by an induced subtree T of size i of
G, where the parameters σ and τ are defined by

σ =





0, if s ∈ T, degT (s) > 1;
1, if s ∈ T, degT (s) = 1;
2, if s /∈ T, |N(s) ∩ T | 6= 0;
3, if s /∈ T, |N(s) ∩ T | = 0,

and

τ =





0, if t ∈ T, degT (t) > 1;
1, if t ∈ T, degT (t) = 1;
2, if t /∈ T, |N(t) ∩ T | 6= 0;
3, if t /∈ T, |N(t) ∩ T | = 0.
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Enriched Leaf Function (2/2)

Similarly, let F (G, i, σ, τ) be the maximum number of leaves
that can be realized by an induced subforest of size i whose
two connected components Ts and Tt containing s and t
respectively are such that

σ =

{
0, if degTs(s) > 1;
1, if degTs(s) = 1,

and

τ =

{
0, if degTt(t) > 1;
1, if degTt(t) = 1.
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Two Additional Tools

I Let

DistN = {2, 3} × {2, 3} ∪ {0, 1} × {3} ∪ {3} × {0, 1},

I ⇒ Indicates that the subtrees are distant enough so that
no cycle can ever be “created” by the composition;

I For (a, b) ∈ {0, 1} × {0, 1}, let ` be the leaf loss function
defined by `(a, b) = a+ b

I ⇒ Indicates the number of leaves that are lost after a
composition.
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Series Composition, tree case (1/2)

(ST1) T is included in G1.

ST1(G, i, σ, τ) = L(G1, i, σ, τ1),

where

τ =

{
2, if {s, t} ∈ E2 and τ1 ∈ {0, 1};
3, otherwise.

(ST2) T is included in G2.

ST2(G, i, σ, τ) = L(G2, i, σ2, τ)

where

σ =

{
2, if {s, t} ∈ E1 and σ2 ∈ {0, 1};
3, otherwise.

(ST3) T is included neither in G1 nor G2.

ST3(G, i, σ, τ) = max
(i1,i2)`i+1
τ1,σ2∈{0,1}

{L(G1, i1, σ, τ1)+L(G2, i2, σ2, τ)−`(τ1, σ2)}
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Series Composition, tree case (2/2)

Combining the three cases, we have

L(G, i, σ, τ) = max
j∈{1,2,3}

{STj(G, i, σ, τ)} (1)
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Series Composition, forest case (1/2)

(SF1) Ts is included in G1 and Tt is included in G2.

SF1(G, i, σ, τ) = max
(i1,i2)`i

(τ1,σ2)∈DistN

{L(G1, i1, σ, τ1) + L(G2, i2, σ2, τ)}

(SF2) Ts sticks out of G1 in G2 and Tt is included in G2.

SF2(G, i, σ, τ) = max
(i1,i2)`i+1
τ1,σ2∈{0,1}

{L(G1, i1, σ, τ1)+F (G2, i2, σ2, τ)−`(τ1, σ2)}

(SF3) Ts is included in G1 and Tt sticks out of G2 in G1.

SF3(G, i, σ, τ) = max
(i1,i2)`i+1
τ1,σ2∈{0,1}

{F (G1, i1, σ, τ1)+L(G2, i2, σ2, τ)−`(τ1, σ2)}
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Series Composition, forest case (2/2)

Combining all three cases, we obtain the expression

F (G, i, σ, τ) = max
j=1,2,3

{SFj(G1 ./ G2, i, σ, τ)} (2)
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Parallel Composition and Basic Cases

I Similar to the series composition case;

I More cases in particular in the case of forest cases;

I See the proceedings for the formulas (too many cases...);

I The basic cases are easy;
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Concluding Remarks

I The case of bounded tree-width?

I Taking into account the graph’s automorphism group?

I Application to mathematical chemistry;

I Our recursive formulas can “easily” be extended to count
and generate all fully leafed induced subtrees;

I Link with species theory?
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