The Switching Lemma Applications of the Switching Lemma A semantic view Sketch of Proof

A semantic view of the switching lemma

Dimitris J. Kavvadias and Lina Panagopoulou

Department of Mathematics University of Patras

June 17, 2018

Overview

- The Switching Lemma
- 2 Applications of the Switching Lemma
- 3 A semantic view
- 4 Sketch of Proof

The Switching Lemma

- Deals with boolean functions
- Boolean function φ: defined on n boolean variables using the logical connectives (∨, ∧, ¬)
- $\varphi: \{0,1\}^n \to \{0,1\}$
- \bullet φ may come in various syntactic forms
 - Conjuctive normal form, CNF
 - kCNF: each clause has at most k literals $\varphi = (\neg x_1 \lor \neg x_2 \lor x_5) \land (x_2 \lor \neg x_4 \lor x_5) \land (\neg x_3 \lor x_4) \land (x_4 \lor \neg x_5)$
 - Disjuctive normal form, DNF
 - *k*DNF: each term has at most *k* literals $\varphi = (x_1 \land x_2 \land \neg x_3) \lor (\neg x_3 \land x_4) \lor (x_2 \land \neg x_4)$

The Switching Lemma

- ullet Let φ be a boolean function in CNF
- Random restriction ρ : select each variable with probability p and assign to it the value 0 or 1 with probability 0.5
- *p* is close to 1
- $\varphi|_{\rho}$ is the simplified function after substituting the chosen values to the selected variables
- Example:

$$\varphi = (\neg x_1 \lor \neg x_2 \lor x_5) \land (x_2 \lor \neg x_4 \lor x_5) \land (\neg x_3 \lor x_4) \land (x_4 \lor \neg x_5)$$

Let $\rho : x_1 = 0, x_3 = 1, x_5 = 0$
Then $\varphi|_{\alpha} = (x_2 \lor \neg x_4) \land (x_4)$

The Switching Lemma

• The Switching Lemma: If φ is kCNF then $\varphi|_{\rho}$ is sDNF expressible with high probability for constants $k, s \geq 2$.

Switching Lemma (Håstad 1986)

Let φ be a kCNF expressible Boolean function. Let ρ be a random restriction that selects a variable of φ with probability p. Then for every $s \geq 2$.

$$\Pr(\varphi \mid_{\rho} \text{ is not } sDNF \text{ expressible}) \leq (5k(1-p))^s$$

 De Morgan's rule gives a symmetric form of the Switching Lemma

Applications of the Switching Lemma

• Parity function.

For
$$x_i \in \{0,1\}^n$$
 $f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n x_i \pmod{2}$

• The parity function cannot be computed by constant depth, unbounded fan-in, polynomial size circuits

Proofs of the Switching Lemma

- M. Ajtai
- A. C. C. Yao
- M. Furst, J. Saxe and M. Sipser
- J. Håstad 1986: using quite involved arguments with conditional probabilities
- A. Razborov 1992: simpler proof using information-theoretic arguments
- P. Beame 1994: simplified arguments using decision trees

All the above are based on studying the effects of the restriction on the formula φ itself (syntactic approach)

• Instead of studying the formula φ , we study its set of *models* M i.e., satisfying truth assignments

Definition k—compatibility

Let n be a positive integer and let $M \subseteq \{0,1\}^n$ be a set of Boolean vectors. For k > 1, we say that a Boolean vector $v \in \{0,1\}^n$ is k-compatible with M if for any sequence of k positions $0 \le i_1 < \ldots < i_k \le n$, there exists a vector in M that agrees with v in these k positions.

Lemma kCNF expressibility

Let $M \subseteq \{0,1\}^n$ be a set of binary vectors. Then the following are equivalent:

- M is a kCNF set.
- If $m \in \{0,1\}^n$ is k-compatible with M, then $m \in M$
- De Morgan's rule leads to symmetric form

Lemma kDNF expressibility

Let $M \subseteq \{0,1\}^n$ be a set of binary vectors. Then the following are equivalent:

- M is a kDNF set.
- If $m \in \{0,1\}^n$ is k-compatible with \overline{M} , then $m \in \overline{M}$

- In the vector view
 - A random restriction ρ selects a subset of vectors of M that agree with the chosen values in the selected positions by ρ
 - ullet The fixed positions by ho are projected out
- Let N be the remaining parts of the chosen vectors. Define $M \mid_{\rho} = N$
- Informally: if M is kCNF then with high probability N is sDNF for k, s > 2

Combining the above

The Switching Lemma (semantic form)

Let $M \subseteq \{0,1\}^n$ be a set of binary vectors with the property that every vector $m \in \overline{M}$ is not k-compatible with M. Let ρ be a random restriction on M that selects a position with probability p and let $N = M \mid_{\rho}$. Then for every $s \ge 2$.

 $\Pr(N \text{ includes an } s\text{-compatible vector with } \overline{N}) \leq (5k(1-p))^s$

- M is kCNF set: every model in \overline{M} has specific "bad" values in at least one "bad" k—tuple of positions
- This *k*-tuple corresponds to a clause *C*.
- With respect to a specific bad k—tuple, a random restriction ρ may:
 - Select all k positions of the tuple with bad values. This corresponds to falsifying clause C. $\Pr(C \equiv 0) = (\frac{p}{2})^k$
 - ② Select at least one "good" value in the k-tuple. This corresponds to satisfying clause C. $\Pr(C \equiv 1) = 1 (1 \frac{p}{2})^k$
 - **3** Select up to k-1 positions with bad values. The bad tuple remains possibly with smaller k. Clause C "survives". $\Pr(C \text{ survives from } \rho) = P_s = (1 \frac{p}{2})^k (\frac{p}{2})^k$

- Observation. The three previous cases correspond to:
 - **1** ρ falsifies C, $M|_{\rho}$ is empty, trivially sDNF. ρ is a good restriction
 - 2 ρ satisfies C, C is removed from the formula
 - **3** The interesting case. *C* remains in the formula but possibly becomes smaller

Lemma

If $\ell \leq s$ bad tuples survive the restriction ρ then ρ is a good restriction.

 Idea: the above case a disagreeing s—tuple can always be found for every model in N

- If $\ell > s$ tuples survive then ρ can be either good or bad
- Special case. Disjoint clauses
- In this case when $\ell > s, \rho$ is bad
- The exact probability can now be calculated
- Let m be the number of clauses of φ

$$\Pr(\varphi \mid_{\rho} \text{ is not } s \text{DNF})) = (1 - (\frac{p}{2})^k)^m - \sum_{j=0}^s \binom{m}{j} \cdot P_s^j \cdot (1 - (1 - \frac{p}{2})^k)^{m-j}$$

- General case: the clauses are not disjoint
- We consider the case $\ell > s$ to give a bad restriction
- Proof by induction on m, the number of clauses
- Denote by $H_s = 5k(1-p)^s$
- ullet Let e(arphi,s) the event that exactly $\ell=s$ clauses survive in $arphi|_
 ho$
- ullet Let E(arphi,s) the event that $\ell>s$ clauses survive in $arphi|_
 ho$
- Denote $\varphi' = \varphi \backslash C$

Inductive relation

$$\Pr(\textit{E}(\varphi,s)) = \Pr(\textit{e}(\varphi',s) \land (\textit{C survives})) + \Pr(\textit{E}(\varphi',s) \land (\textit{C} \not\equiv 0))$$

- This relation allows induction on the number of clauses
- Inductive hypothesis. Assume $\Pr(E(\varphi, s)) \leq H_s$
- We restrict our attention to the set of assignments A that make C survive
- For $\alpha \in \mathcal{A}$ let $e(\alpha)$ be the event: ρ assigns α to the variables of C

First term becomes

$$\begin{split} &\Pr(\textit{e}(\varphi', \textit{s}) \land (\textit{C survives})) = \\ &\Pr(\textit{e}(\varphi', \textit{s}) \land \bigvee_{\alpha \in \mathcal{A}} \textit{e}(\alpha)) = \Pr(\bigvee_{\alpha \in \mathcal{A}} (\textit{e}(\varphi', \textit{s}) \land \textit{e}(\alpha))) \leq \\ &\sum_{\alpha \in \mathcal{A}} \Pr(\textit{e}(\varphi', \textit{s}) \land \textit{e}(\alpha)) \leq \sum_{\alpha \in \mathcal{A}} \Pr(\textit{E}(\varphi', \textit{s} - 1) \land \textit{e}(\alpha)) = \\ &\sum_{\alpha \in \mathcal{A}} \Pr(\textit{E}(\varphi', \textit{s} - 1) \mid \textit{e}(\alpha)) \cdot \Pr(\textit{e}(\alpha)) \end{split}$$

• Using the induction hypothesis we get

$$\Pr(E(\varphi', s-1) \mid e(\alpha)) \leq H_{s-1}$$

- Note. There are issues involving conditioning on $e(\alpha)$
- First term becomes

$$\Pr(e(\varphi',s) \land (C \text{ survives})) \leq H_{s-1} \sum_{\alpha \in \mathcal{A}} \Pr(e(\alpha)) = H_{s-1}P_s$$

We do the same for the second term and get that

$$\Pr(\varphi \mid_{\rho} \text{ is not } sDNF) \leq H_{s-1}P_s + H_s(1 - (\frac{p}{2})^k)$$

To complete the induction we need to show

$$H_{s-1}P_s + H_s(1-(\frac{p}{2})^k) \leq H_s$$

or equivalently

$$\left(1-\frac{p}{2}\right)^k \leq \left(5k(1-p)+1\right)\left(\frac{p}{2}\right)^k$$

• This can be shown by algebraic manipulations

The Switching Lemma Applications of the Switching Lemma A semantic view Sketch of Proof

The End