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The variable framework

X1, . . . ,Xl mutually independent random variables.

Ω probability space of all assignments.

E1, . . . ,Em ⊆ Ω “undesirable” events.

sc(Ej) ⊆ {X1, . . . ,Xl} scope of Ej .

SAT

(x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
C1

∧ (x̄2 ∨ x3 ∨ x4)︸ ︷︷ ︸
C2

∧ (x1 ∨ x2 ∨ x5)︸ ︷︷ ︸
C3

∧ (x4 ∨ x̄5 ∨ x6)︸ ︷︷ ︸
C4

xi ↔ Xi : {0, 1}6 7→ {0, 1}
Ei ↔ Cj is unsatisfied.
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Algorithmic idea (Moser, 2009)

I Sample the random variables.

I Resample them until no undesirable event occurs.

Select an occurring event and resample the variables in its scope.

Check the events affected by this resampling.

SAT

∧ ∧ ∧

(0, 0, 1, 0, 1, 1) : satisfying assignment.
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Dependency graph

Ei ∼ Ej ⇔ sc(Ei ) ∩ sc(Ej) 6= ∅,

G =
(
{1, . . . ,m}, {{i , j} | Ei ∼ Ej}

)
(x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

C1

∧ (x̄2 ∨ x3 ∨ x4)︸ ︷︷ ︸
C2

∧ (x1 ∨ x2 ∨ x5)︸ ︷︷ ︸
C3

∧ (x4 ∨ x̄5 ∨ x6)︸ ︷︷ ︸
C4

E1 ∼ E2,E1 ∼ E3,E2 ∼ E3,E2 ∼ E4,E3 ∼ E4

.

11 2

3 44

{1, 4}: independent set.
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Simple, symmetric LLL

p ∈ [0, 1), d ∈ Z≥0.

I Pr [Ej ] ≤ p, j = 1, . . . ,m,

I d is the maximum degree of the dependency graph.

Theorem (Lovász Local Lemma (symmetric))

If ep(d + 1) ≤ 1 then:

Pr

[
m⋂
j=1

E j

]
> 0.

Erdős and Lovász (1975): original statement and proof of LLL.

Erdős and Spencer (1991): statement and proof of the lopsided LLL.

I φ(x1, . . . , xn) k-SAT formula and Pr [xi = 0] = 1
2 .

I If d ≤ b2ke − 1c, then φ(x1, . . . , xn) satisfiable.
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Erdős and Lovász (1975): original statement and proof of LLL.
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Asymmetric LLL

Nj = {i | Ej ∼ Ei}.

Ej ↔ χj ∈ (0, 1):

Pr [Ej ] ≤ χj

∏
i∈Nj

(1− χi ),

for all j ∈ {1, . . . ,m}, then:

Pr

[
m⋂
j=1

E j

]
> 0.

I Moser and Tardos (2009-10): algorithmic proof of the symmetric
(simple or lopsided) LLL.
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Shearer’s lemma, 1985

G = ({1, . . . ,m},E ) and p̄ = (p1, . . . , pm).

I (G ) := {∅ = I0, I1, . . . , Is} the set of independent sets of G .

qI (G , p̄) :=
∑

J∈I (G):I⊆J

(−1)|J\I |
∏
j∈J

pj .

For E1, . . . ,Em with dependency graph G and Pr [Ej ] = pj , j = 1, . . . ,m:

qI (G , p̄) > 0 ⇐⇒ Pr

[
m⋂
j=1

E j

]
> 0.

I Kolipaka, Rao and Szegedy (2011): algorithmic proof.
I Harris (2015): Proof that the lopsided LLL in the variable framework
can be stronger that Shearer’s Lemma.
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Outline

1 Introduction
Preliminaries
Lovász local lemma
Our Method

2 Asymmetric Lovász local lemma
M-Algorithm
Forests
Recurrence Relations

3 Shearer’s lemma
Kolipaka et al. Algorithm
Recurrence Relation
Gelfand’s formula
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Devise Moser-like algorithms that resample occurring events and then
check their neighborhoods.

I Use “tree-like” structures to depict the executions of our algorithms.
I Use complementary “validation” algorithms to avoid dependencies

introduced by the Moser-like algorithms.

Using direct probabilistic arguments, express a bound to the
probability that our algorithms last for at least n steps by a recurrence
relation.

Solve the recurrence by analytic means and show that this probability
is inverse exponential in n.

I Giotis, Kirousis, Psaromiligkos and Thilikos (2015): symmetric LLL.
I Giotis, Kirousis, Livieratos, Psaromiligkos and Thilikos (2018):
(variable-directed) lopsidependent LLL.
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M-Algorithm

1 Sample the variables X1, . . . ,Xl .

2 while there exists an occurring event, let Ej be the least indexed such
event and call Resample(Ej)

.

Resample(Ej)

3 Resample the variables in sc(Ej).

4 while some event in Nj ∪ {j} occurs, let Ek be the least indexed such
event and call Resample(Ek)

.
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M-Algorithm

If and when M-Algorithm stops, it finds a solution.

(Lemma) Resample(Ej):
I Ei does not occur at the beginning ⇒ Ei does not occur at the end,
I Ej does not occur at the end.

(Corollary) At most m root Resample calls.

Pn = Pr [M-Algorithm lasts for at least n rounds].

Aim: Prove that Pn is inverse exponential in n.
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Witness Forests

Construct the witness forest F of an execution of M-Algorithm:

For each Resample(Ej) call, create a node labeled by Ej .

If Resample(Ek) is called from within Resample(Ej), Ek is a child
of Ej .

Labels of nodes are pairwise distinct for roots and for siblings,

Out-degree of node Ej ≤ |Nj |,
at most m roots.

I Pn =
∑
F :|F|=n

Pr [M-Algorithm executes with witness forest F .]
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E2

E2

E1 E4

E4

(x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
C1

∧ (x̄2 ∨ x3 ∨ x4)︸ ︷︷ ︸
C2

∧ (x1 ∨ x2 ∨ x5)︸ ︷︷ ︸
C3

∧ (x4 ∨ x̄5 ∨ x6)︸ ︷︷ ︸
C4
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Validation Algorithm
M-Algorithm introduces dependencies as it selects which event to
resample.

ValAlg (Input: Ej1 , ...,Ejn of F)

1 Sample Xi , i = 1, ..., l .

2 for s = 1, ..., n do

3 if Ejs does not occur return failure and exit

4 else Resample sc(Eji ).

5 end for

6 return success.

Pn =
∑
F :|F|=n

Pr [M-Algorithm executes with witness forest F ]

≤
∑
F :|F|=n

Pr [ValAlg succeeds on F ]
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Witness Trees

T1, T2 trees with n nodes each and roots labeled by Ej :

T1’s root has one child labeled by Ej ,

T2’s root has children with labels in Nj ,

n = (n1, . . . , n2m) :
∑2m

i=1 ni = n,

Qn,j , Rn,j :
I Pr [VT1 ] ≤ Qn,j
I Pr [VT2 ] ≤ Rn,j .

Pn ≤
∑
n

∑
n1+···+nm=n

(
Qn1,1 + Rn1,1

)
· · ·
(
Qnm,m + Rnm,m

)
.
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Multivariate generating functions

t = (t1, . . . , t2m) and tn = (tn11 , . . . , t
n2m
2m ).

Qj(t) =
∑

n:nj≥1
Qn,jt

n,

Rj(t) =
∑

n:nm+j≥1
Rn,jt

n.

Qn,j = Pr [Ej ]
(
Qn−(1)j ,j + Rn−(1)j ,j

)
,

Rn,j = Pr [Ej ]
∑

n1+···+nkj=n−(1)m+j

(
Qn1,j1 + Rn1,j1

)
· · ·
(
Q

nkj ,jkj
+ R

nkj ,jkj

)
.

I Solve (Q1(t), . . . ,Qm(t),R1(t), . . . ,Rm(t)) by the multivariate Lagrange
inversion formula [Bender and Richmond, 1998].
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The Lemma

G = ({1, . . . ,m},E ) and p̄ = (p1, . . . , pm).
I (G ) := {∅ = I0, I1, . . . , Is} the set of independent sets of G .

qI (G , p̄) :=
∑

J∈I (G):I⊆J

(−1)|J\I |
∏
j∈J

pj .

For E1, . . . ,Em with dependency graph G and Pr [Ej ] = pj , j = 1, . . . ,m:

qI (G , p̄) > 0 =⇒ Pr

[
m⋂
j=1

E j

]
> 0.

N(I ): I and its neighbors in the dependency graph.

vbl(I ): set of variables in the scopes of the events in I .

I covers J if J ⊆ N(I ).
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GenResample

1 Sample the variables X1, . . . ,Xl .

2 while there exists an occurring event, let Ii be the least indexed
maximal independent set containing only occurring events and do

3 Resample vbl(Ii ).

Lemma

If Ii1 , . . . , Iin are the independent sets selected by GenResample, then Iit
covers Iit+1 .

Proof Sketch

Ej in Iit+1 and not in N(Iit ).

Ej did not occur at the beginning of t.

Ej does not depend on Et ∈ Iit , thus it does not occur at the end of
round t. Contradiction.
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Witness Paths

P: path with n nodes, labeled by Ii1 , . . . , Iin .

Pn :=Pr [GenResample lasts for at least n rounds]

=
∑

P:|P|=n

Pr [GenResample executes with path P].

GenVal
On input P with labels Ii1 , . . . , Iin :

1 Sample the variables X1, . . . ,Xl .

2 Check each Iit . If there is a non-occurring Ej in Iit , fail. Else,
resample vbl(Iit ).

3 If P has no other nodes, GenVal succeeds.

Pn ≤
∑

P:|P|=n

Pr [GenVal succeeds with path P].
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Recurrence

Pr [VP ] := Pr [GenVal succeeds on input P].

Qn,i : Pr [VP ] ≤ Qn,i ,

where P has n nodes, whith source Ii .

Qn,i =
∏
j∈Ii

pj
∑

Ii covers J

Qn−1,J .

I Show that Qni are inverse exponential to n.

Giotis et al. (Dep. of Math., UoA/UoC) Asymmetric LLL and Shearer’s lemma GASCom, 2018 28 / 33



Recurrence

Pr [VP ] := Pr [GenVal succeeds on input P].

Qn,i : Pr [VP ] ≤ Qn,i ,

where P has n nodes, whith source Ii .

Qn,i =
∏
j∈Ii

pj
∑

Ii covers J

Qn−1,J .

I Show that Qni are inverse exponential to n.

Giotis et al. (Dep. of Math., UoA/UoC) Asymmetric LLL and Shearer’s lemma GASCom, 2018 28 / 33



Recurrence

Pr [VP ] := Pr [GenVal succeeds on input P].

Qn,i : Pr [VP ] ≤ Qn,i ,

where P has n nodes, whith source Ii .

Qn,i =
∏
j∈Ii

pj
∑

Ii covers J

Qn−1,J .

I Show that Qni are inverse exponential to n.

Giotis et al. (Dep. of Math., UoA/UoC) Asymmetric LLL and Shearer’s lemma GASCom, 2018 28 / 33



Recurrence

Pr [VP ] := Pr [GenVal succeeds on input P].

Qn,i : Pr [VP ] ≤ Qn,i ,

where P has n nodes, whith source Ii .

Qn,i =
∏
j∈Ii

pj
∑

Ii covers J

Qn−1,J .

I Show that Qni are inverse exponential to n.

Giotis et al. (Dep. of Math., UoA/UoC) Asymmetric LLL and Shearer’s lemma GASCom, 2018 28 / 33



Outline

1 Introduction
Preliminaries
Lovász local lemma
Our Method

2 Asymmetric Lovász local lemma
M-Algorithm
Forests
Recurrence Relations

3 Shearer’s lemma
Kolipaka et al. Algorithm
Recurrence Relation
Gelfand’s formula

Giotis et al. (Dep. of Math., UoA/UoC) Asymmetric LLL and Shearer’s lemma GASCom, 2018 29 / 33



Stable set matrix

M s × s matrix, M(i , j) =
∏

j∈I pj if I covers J. Else it is 0.

qn = (Qn,1, . . . ,Qn,s):

qn = Mqn−1 ⇒ qn = Mn−1q1.

Pn ≤
s∑

i=1

Qn,i = ||qn||1,

where || · ||1 is the 1-norm.
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Matrix norms

||M||1 := supx 6=0
||Mx ||1
||x ||1

≥ ||Mq1||1
||q1||1

,

where ||M||1 is the induced norm for squared matrices that || · ||1 yields
[Horn and Johnson, Matrix Analysis, 1990].

||qn||1 = ||Mn−1||1 · ||q1||1.

I It suffices to prove that ||Mn−1||1 is inverse exponential to n.
I p(M) spectral radius of M.
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Bounding ||Mn−1||1

I Kolipaka et. al: qI (G , p̄) > 0⇒ p(M) < 1.

I Gelfand’s formula: p(M) = limn→∞ ||Mn||1/n,

Thus:
||Mn−1||1 < (p(M) + ε)n−1.
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Thank you!
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