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q-Series Preliminaries, 0 < q < 1

The q-binomial coe�cient is de�ned by(
n

k

)
q

:=
(q; q)n

(q; q)k(q; q)n−k
=

[n]q!

[k]q![n − k]q
,

where

[n]q! = [1]q[2]q . . . [n]q =
(q; q)n
(1− q)n

=

∏n
k=1

(1− qk)

(1− q)n

is the q-factorial number of order n with [t]q = 1−qt

1−q .

The q-binomial coe�cient
(
n
k

)
q
, for n and k positive integers, equals

the k-combinations {m1,m2, . . . ,mk} of the set {1, 2, . . . , n}, weigh-
ted by qm1+m2+···+mk−(k+12 ),∑

1≤m1<m2<···<mk≤n

qm1+m2+···+mk−(k+12 ) =

(
n

k

)
q

.
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q-Series Preliminaries, 0 < q < 1

Let n be a positive integer and let x , y and q be real numbers, with
q 6= 1. Then, a version of q-Cauchy formula is(

x + y

n

)
q

=
n∑

k=0

qk(y−n+k)

(
x

k

)
q

(
y

n − k

)
q

.

The q-multinomial coe�cient is de�ned by(
n

k1, k2, . . . , kr−1

)
q

=
[n]q!

[k1]q![k2]q! · · · [kr−1]q![kr ]q!
,

where kr = n − k1 − k2 − · · · − kr−1, for ki = 0, 1, 2, . . . , n, i =
1, 2, . . . , r ,n = 0, 1, 2, . . . .
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q-Binomial Distribution

Let a sequence of q-Bernoulli trials with varying probability of success
at the ith trial,

pi =
θqi−1

1+ θqi−1
, i = 1, 2, . . . , 0 < q < 1, 0 < θ <∞.

Then the probability function (p.f) of the number X of successes at
n such trials is given by

fX (x) = P(X = x) =

(
n

x

)
q

q(
x
2)θx∏n

j=1
(1+ θqj−1)

, x = 0, 1, . . . , n,

for θ > 0, 0 < q < 1. The distribution of the random variable (r.v.)
X is called q-binomial distribution, with parameters n, θ and q (see
Charalambides (2016)).
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q-Binomial distribution: q-mean, q-variance

The mean value, say µq, of the random variable Y = [Xn]1/q is

µq = [n]q
θ

1+ θqn−1

The variance, say σ2q , of the r.v. Y is

σ2q =
θ2[n]q[n − 1]q

q(1+ θqn−1)(1+ θqn−2)
+

θ[n]q
(1+ θqn−1)

−
θ2[n]2q

(1+ θqn−1)2
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q-Asymptotics: q-Stirling Formula

Theorem (Kyriakoussis and Vamvakari(2013))

The q-Stirling formula for n→∞, of the q-factorial number of order n,
is given by

[n]q! ∼=
(2π(1− q))1/2

(q log q−1)1/2

q(
n
2)q−n/2[n]

n+1/2
1/q∏∞

j=1
(1+ (q−n − 1)qj−1)

.
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q-Asymptotics: q-Analogue of De-Moivre Laplace Theorem

Theorem (Kyriakoussis and Vamvakari(2013))

Consider the probability function (p.f.) of the q-binomial distribution,
where θ = θn, n = 0, 1, 2, . . . such that θn = q−αn with 0 < a < 1
constant. Then, for n→∞, the q-binomial distribution is approximated
by a deformed standardized continuous Stieltjes-Wigert distribution as
follows:

fXn (x)
∼=

q−7/8

σq(2π)1/2

(
log q−1

q−1 − 1

)
1/2 (

q−3/2(1− q)1/2
[x]1/q − µq

σq
+ q−1

)−1/2

q−x

· exp

(
1

2 log q
log2

(
q−3/2(1− q)1/2

[x]1/q − µq

σq
+ q−1

))
, x ≥ 0,

where µq and σq are the q-mean and q-variance of the q-binomial
distribution.
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A q-Random walk on the integers

De�nition

The Markov chain whose state space is the set of all integers, and whose
transition probabilities are given by

Pi,i+1 =
θqi−1

1+ θqi−1
= 1− Pi,i−1, i = 0,±1,±2, . . . ,

0 < q < 1, 0 < θ <∞

is called q-random walk on the integers.

Thomas Kamalakis and Malvina Vamvakari
q-Random Walks on the Integers and on the Two-Dimensional Integer Lattice



Introduction Main Results Future Plan

A q-Random walk on the integers

De�nition

The Markov chain whose state space is the set of all integers, and whose
transition probabilities are given by

Pi,i+1 =
θqi−1

1+ θqi−1
= 1− Pi,i−1, i = 0,±1,±2, . . . ,

0 < q < 1, 0 < θ <∞

is called q-random walk on the integers.

Thomas Kamalakis and Malvina Vamvakari
q-Random Walks on the Integers and on the Two-Dimensional Integer Lattice



Introduction Main Results Future Plan

A q-Random walk on the integers

The probability that the chain will be back in initial state after 2n
transitions, n = 0, 1, 2, . . . , if n of them were increases and n of

them were decreases , is the q-binomial probability

P2n
0,0 =

(
2n

n

)
q

q(
n
2)θn∏2n

j=1(1+ θqj−1)
, θ > 0, 0 < q < 1.

Theorem

The q-random walk on the integers after 2n steps, starting from the

origin 0, for θ constant or for θ = q−αn, 0 < a < 1, n = 0, 1, 2, . . .
is recurrent, while for θqn →∞, as n→∞, is transient.
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A q-Random Walk Stochastic Process

Consider the time interval (0, t], t > 0, and partition it into parts
which are geometrically decreasing with rate q, de�ned by

δi (n; t) = (n)−1q qi−1t, i = 1, 2, . . . , n, n ≥ 1.

Consider the process generated by making a step of length δ to
the right and a step of length δ to the left at every time period
(n)−1q qi−1t, i = 1, 2, . . . , n, with probability of success (right step)
and probability of failure (left step) given by

P (Xi = δ) =
θ(n)−1q qi−1t

1+ θ(n)−1q qi−1t
and P (Xi = −δ) =

1

1+ θ(n)−1q qi−1t
,

where 0 < q < 1, 0 < θ <∞.
At time

∑n
i=1

δi (n; t) = t, the position of the process is the r.v.

Xn,q(t) =
n∑

i=1

Xi .
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De�nition

The continuous time stochastic process {Xn,q(t), t ≥ 0}, is called
q-random walk stochastic process with parameters q, n and
θ,0 < θ <∞ if the following properties hold

(a) In each of the consecutive mutually disjoint time intervals of length
δi (n; t) = (n)−1q qi−1t, i = 1, 2, . . . , n, n ≥ 1, at most one event
(right or left step of length δ = 1) occurs and

P

(
Xn,q

(
1− qi

1− qn
t

)
− Xn,q

(
1− qi−1

1− qn
t

)
= δ

)
=

θqi−1t
(n)q

1+ θqi−1t
(n)q

,

P

(
Xn,q

(
1− qi

1− qn
t

)
− Xn,q

(
1− qi−1

1− qn
t

)
= −δ

)
=

1

1+ θqi−1t
(n)q

.

(b) The increments Xn,q(ti )− Xn,q(ti−1), where ti − ti−1 = (n)−1q qi−1t,
i = 1, 2, . . . , n are independent.

(c) The process starts at time t = 0 with Xn,q(0) = 0.
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q-Random Walk Simulations in R
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Figure 1: Generation of 5, q-Random Walk Processes in R with with q = 0.7, n = 30, θ = q−15, t = 1.
Figure 2: Generation of 5, q-Random Walks Processes with q = 0.7, n = 30, θ = 1, t = 10.
Figure 3: Generation of 5, q-Random Walks Processes with q = 0.9, n = 30, θ = 1, t = 10.
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q-Random Walk Simulations in R
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Figure 4: Generation of 5, More q-Random Walks with θ = 10, q = 0.5, n = 30, t = 10.

Figure 5: Generation of 5 q-Random Walks Processes with q = 0.7, n = 30, θ = q−45, t = 10.
Figure 6: Generation of 5 More q-Random Walks Processes with q = 0.7, n = 30, θ = exp(30), t = 10.
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A q-Brownian Motion

Theorem (Vamvakari(2017)

Consider the q-random Walk process with steps of length δ = c/θ1/2, where c = (q−1 − 1)/(log q−1)

is a normalization constant and θ = θn = q−αn, with 0 < α < 1. Then the q-random walk process is
approximated, as n →∞, by a continuous analogue one {Yq(t), t ≥ 0}, where the r.v. Yq(t) is the
position after time t with probability density function distribution

f (y, t) =
q−7/8

σ(2π)1/2

(
q−1 − 1

)
1/2

(log q−1)1/2

(
(1− q)1/2

q3/2
·
(y − µt )

σt
+ q−1

)−1/2

· exp
(

1

2 log q
log2

(
q−3/2(1− q)1/2 ·

(y − µt )

σt
+ q−1

))
, (1)

y > µt − σtq1/2(1− q)−1/2
,

where the mean value µ and the variance σ2 of the r.v. Yq(t) are given by

µt = E(Yq(t)) = ct, σ2t = V (Yq(t)) =
1− q

q
(ct)2 + ct.
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q-Brownian Motion

De�nition (Vamvakari (2017)

The continuous stochastic process {Yq(t), t ≥ 0}, is called q-Brownian
motion with parameters q, µt and σ

2

t , if the following properties hold

(A) The distribution of the increment Yq(t2) − Yq(t1), with t2 − t1 =
(1 − q)t, t > 0, is the linear transformed standardized Stieltjes-
Wigert distribution with p.d.f (1), where µt2−t1 = c(1 − q)t and
σ2t2−t1 =

1−q
q (c(1− q)t)2 + c(1− q)t.

(B) The increments Yq(tk)−Yq(tk−1), where tk − tk−1 = qk−1(1− q)t,
k = 1, 2, . . . , are independent.

(C) Yq(0) ≥ 0 and Yq(t) is continuous at t = 0.
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q-Brownian Motion

Theorem

Let Wq(T ) = max0≤t≤T Yq(t) the r.v. of the maxima in the q-Brownian
motion and Tb the �rst time passage of the process Yq(t) from the point
b with b > µt − σtq1/2(1− q)−1/2. Then

P (Wq(T ) ≥ b) = q−15/8 (1− erf (Bt))

and the p.d.f of the �rst time passage from b is given by

fTb
(t) = −dBt

dt

2q−15/8√
π

exp
(
−B2

t

)
,

where

Bt =
1√

2logq−1

(
log

(
q−3/2(1− q)1/2

b − µt

σt
+ q−1

)
+

logq

2

)
.
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q-Brownian Motions Simulations in R
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Figure 1. q-Brownian Motion Simulation in R with q = 0.9, t = 10
Figure 2. q-Brownian Motion Simulation in R with q = 0.9, t = 1
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A q-Random Walk on the 2D Integer Lattice

De�nition

The Markov chain in which at each transition is likely to take one step to
the right, left, up or down in the plane with varying transition
probabilities given respectively by

P(i,j),(i+1,j) =
θ1q

i−1

(1+ θ1qi−1)(1+ θ2qj−1)
,

P(i,j)(i−1,j) =
1

(1+ θ1qi−1)(1+ θ2qj−1)
,

P(i,j),(i,j+1) =
θ2q

j−1

(1+ θ1qi−1)(1+ θ2qj−1)
,

P(i,j)(i,j−1) =
θ1q

i−1θ2q
j−1

(1+ θ1qi−1)(1+ θ2qj−1)
, i , j = 0,±1,±2, . . . ,

where 0 < θ1, θ2 <∞, 0 < q < 1, is called q-random walk on the
two-dimensional integer lattice.
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A q-Random Walk on the 2D Integer Lattice

Lemma

Let X+ be the number of �right steps", X− be the number of �left

steps", Y+ be the number of �up steps", and Y− be the number of be

�down steps", after 2n steps in the q-random walk on the 2D dimensional

integer lattice, starting from the origin 0, with θ1/θ2 = qn/2,
n = 0, 1, 2, . . . . Then, it holds that

Pn
0,0 = P

(
X+ = x ,X− = x ,Y+ = n − x ,Y− = n − x

)
=

=
θ2n
2
q2(

n
2)
(

2n
x,x,n−x

)
q
q−x(n−x)

(
θ1
θ2

)2x
∏

2n
i=1

(1+ θ1qi−1 + θ2qn−i−1 + θ1θ2qn−2)
, x = 0, 1, .., n.
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A q-Random Walk on the 2D Integer Lattice

Theorem

Let the q-random walk on the 2D dimensional integer lattice after 2n
steps, starting from the origin 0, with θ1/θ2 = qn/2, n = 0, 1, 2, . . .. Then
for θ2 constant or for θ2 = q−αn, 0 < a < 1, n = 0, 1, 2, . . . , the 2D

q-random walk is recurrent, while for θ2q
n →∞, as n→∞, is transient.
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A 2D q-Random Walk Stochastic Process

Let the time interval (0, t], t > 0, and partition it into parts which are geometrically decreasing
with rate q, de�ned by

δi (n; t) = (n)−1

q qi−1t, i = 1, 2, . . . , n, n ≥ 1. (2)

Let the process generated by taking one step, of length δ = 1, to the right, left, up or down in the

plane at every time period (n)−1

q qi−1t, i = 1, 2, . . . , n n ≥ 1, with varying transition probabilities

pi,1 = P (Xi = δ, Yi = 0) =
θ1q

i−1t/(n)q

(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)
,

pi,2 = P (Xi = −δ, Yi = 0) =
1

(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)
,

Pi,3 = P (Xi = 0, Yi = δ) =
θ2q

n−i−1t/(n)q

(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)
,

Pi,4 = P (Xi = 0, Yi = −δ) =
θ1θ2q

n−2t2/(n)2q

(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)
, (3)

where 0 < θ1 <∞, 0 < θ2 <∞, 0 < q < 1 with θ1/θ2 = qn/2. Then, at time
∑n

i=1 δi (n; t) =

t, the position of the process is the bivariate r.v.
(
Xn,q(t), Yn,q(t)

)
with Xn,q(t) =

∑n
i=1 Xi and

Yn,q(t) =
∑n

i=1 Yi .
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De�nition

The continuous time bivariate stochastic process {
(
Xn,q(t), Yn,q(t)

)
, t > 0}, is called bivariate q-

random walk stochastic process with parameters n, θ1, θ2 and q, 0 < q < 1, if the following properties
hold

(a) In each of the consecutive mutually disjoint time intervals of length δi (n; t) = (n)−1

q qi−1t, i =

1, 2, . . . , n, n ≥ 1, at most one event (right or left or up or down step) occurs and

P

(
Xn,q

(
1− qi

1− qn
t

)
− Xn,q

(
1− qi−1

1− qn
t

)
= 1, Yn,q

(
1− qi

1− qn
t

)
− Yn,q

(
1− qi−1

1− qn
t

)
= 0

)

=
θ1q

i−1t/(n)q

(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)
,

P

(
Xn,q

(
1− qi

1− qn
t

)
− Xn,q

(
1− qi−1

1− qn
t

)
= −1, Yn,q

(
1− qi

1− qn
t

)
− Yn,q

(
1− qi−1

1− qn
t

)
= 0

)

=
1

(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)
,

P

(
Xn,q

(
1− qi

1− qn
t

)
− Xn,q

(
1− qi−1

1− qn
t

)
= 0, Yn,q

(
1− qi

1− qn
t

)
− Yn,q

(
1− qi−1

1− qn
t

)
= 1

)

=
θ2q

n−i−1t/(n)q

(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)
,

P

(
Xn,q

(
1− qi

1− qn
t

)
− Xn,q

(
1− qi−1

1− qn
t

)
= 0, Yn,q

(
1− qi

1− qn
t

)
− Yn,q

(
1− qi−1

1− qn
t

)
= −1

)

=
θ1θ2q

n−2t2/(n)2q

(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)
, i = 1, 2, . . . , n, 0 < θ1, θ2 <∞, θ1/θ2 = qn/2.

i = 1, 2, . . . , n, are independent.Thomas Kamalakis and Malvina Vamvakari
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De�nition cont.

(b) The bivariate increments
(
Xn,q(ti )− Xn,q(ti−1), Yn,q(ti )− Yn,q(ti−1)

)
, where ti−ti−1 = (n)−1

q qi−1t,

i = 1, 2, . . . , n, are independent.

(c) The process starts at time t = 0 with
(
Xn,q(0), Yn,q(0)

)
= (0, 0).
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2D q-Random Walk Stochastic Processes Simulated in R
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Figure 9: 2D q-Random Walk Process Simulation in R with q = 0.9, n = 20, θ2 = q10, t = 10.

Figure 10: 2D q-Random Walk Process Simulation in R with q = 0.9, n = 20, θ2 = q10, t = 1.

Figure 11: 2D q-Random Walk Process Simulation in R with q = 0.5, n = 20, θ2 = q10, t = 10.
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2D q-Random Walk Stochastic Processes Simulated in R
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Figure 12: 2D q-Random Walk Process Simulation in R with q = 0.7, n = 20, θ2 = q−10, t = 10.

Figure 13: 2D q-Random Walk Process Simulation in R with q = 0.5, n = 20, θ2 = q−30, t = 10.

Figure 14: 2D q-Random Walk Process Simulation in R with q = 0.5, n = 20, θ2 = e10, t = 10.
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Future Plan

Study of q-random walks in higher dimensions

Embedment of q-random walks in random graphs

Study of the limiting bivariate process, as n → ∞, of the 2D

q-Random walk stochastic process

Thank you!

R-Codes are available for anyone interested!
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