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Stirling and Eulerian numbers

The most common combinatorial interpretation of Stirling number
of the second kind S(n, k) is as counting the number of partitions of
[n] = {1, . . . , n} into k blocks.
The Eulerian number A(n, k) counts the number of permutations in
Sn, having des(π) = k − 1, where des(π) is the size of the descent
set of a permutation π ∈ Sn:

Des(π) = {i ∈ [n − 1] | π(i) > π(i + 1)}

2 / 29



Two classical identities

Theorem (classical)
For all positive integers n and r , we have:

S(n, r) = 1
r !

r∑
k=0

A(n, k)
(
n − k
r − k

)

Theorem (classical)
Let x ∈ R and let n ∈ N. Then:

xn =
n∑

k=0
S(n, k)[x ]k

where [x ]k = x(x − 1) · · · (x − k + 1) is the falling polynomial of
degree k and [x ]0 = 1.

This is actually the original definition of Stirling numbers.
A combinatorial proof, realizing xn as the number of functions from the
set {1, . . . , n} to the set {1, . . . , x}, is presented in Stanley’s EC1. 3 / 29



The Hyperoctahedral group Bn

Definition
A signed permutation is a permutation w on the set {±1, . . . ,±n}
with the property that w(−i) = −w(i) for all i .

The hyperoctahedral group Bn is the group of signed permutations.

Definition
Consider an order on the set Σ = {±1, . . . ,±n}:

−n < −(n − 1) < · · · < −1 < 1 < 2 < · · · < n.
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Flag descent of type B

Definition
For π ∈ Bn, define the parameter desA:

desA(π) = |{i ∈ [n] | π(i) > π(i + 1)}|; ε1(π) =
{

1 π(1) < 0
0 π(1) > 0.

The flag descent is defined as: fdes(π) = 2desA(π) + ε1(π).

Example

π =
[

5̄ 4̄ 3̄ 2̄ 1̄ 1 2 3 4 5
5̄ 4 1̄ 2 3̄ 3 2̄ 1 4̄ 5

]
.

desA(π) = 2; ε1(π) = 0; fdes(π) = 2 · 2 + 0 = 4

Definition
Denote by AB(n, k) the number of elements π ∈ Bn satisfying
fdes(π) = k − 1.
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Set partitions of type A
The lattice of set partitions πA(n) can be interpreted as the poset of
intersection subspaces of subsets of hyperplanes in the Coxeter root
system of type An−1: { xi = xj | 1 ≤ i < j ≤ n } ordered by reverse
inclusion.

Example
The partition {{1, 3, 4}, {2, 5, 6}} is interpreted as{

~x = (x1, x2, x3, x4, x5, x6) ∈ R6 ∣∣ x1 = x3 = x4, x2 = x5 = x6
}
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Set partitions of type B

The poset of intersections of subsets of the hyperplanes of the root
system of type B:

{ xi = ±xj | 1 ≤ i < j ≤ n } ∪ { xi = 0 | 1 ≤ i ≤ n }

consists of subspaces which look typically like:

{ x1 = −x3 = x6 = x8 = x9, x5 = −x7, x2 = x4 = 0 }

We can represent each intersection of subspaces in a simpler way like this:

{ {1,−3, 6, 8,−9}, {−1, 3,−6,−8, 9}, {5,−7}, {−5, 7}, {2,−2, 4,−4} }.

7 / 29



Set partitions of type B

Definition
Definition: A set partition of [n] of type B is a way to divide the set
{±1, . . . ,±n} into blocks such that the following conditions are satisfied:

If B appears as a block in the partition, then −B (which is obtained
by negating all the elements of B) also appears in that partition.
There exists at most one block satisfying −B = B. This block is
called the zero block (if it exists, it is a subset of {±1, . . . ,±n} of
the form {±i | i ∈ C} for some C ⊆ [n]).

Definition
SB(n, r) denotes the number of set partitions of {1, . . . , n} of type B
having exactly r blocks.

Example
{{2,−2, 4,−4}, {1,−3, 6, 8,−9}, {−5, 7}, {−1, 3,−6,−8, 9}, {5,−7} }.
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Ordered set partition of type B

Definition
Definition: An ordered set partition of [n] of type B is an ordered
permutation of the elements of a set partition of [n] of type B such that
the following conditions are met:

The zero-block, if exists, appears at the end.
For each block B which in not a zero-block, the blocks B and −B
occupy adjacent places.

Example

{ {5,−7}, {−5, 7}, {1,−3, 6, 8,−9}, {−1, 3,−6,−8, 9}, {2,−2, 4,−4}}.
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Main Theorem 1 (for type B)

Theorem (B-Biagioli-Garber)

2b
r
2c
⌊ r

2

⌋
! SB(n, r) =

r∑
k=1

AB(n, k)
(

n −
⌈ k

2
⌉⌊ r−k

2
⌋ )

Proof’s idea:
LHS = Number of ordered set partitions of [n] of type B.
RHS = Weighted sum of numbers of signed permutations classified by
their flag descent.
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Coxeter groups of type D

Definition
The group Dn is the subgroup of Bn consisting of all the signed
permutations having an even number of negative entries

Definition
For π ∈ Dn, recall:

DesA(π) = { i | π(i) > π(i + 1), i ∈ {1, . . . , n − 1} }.

The descent set Des∗D(π) is defined as follows:

Des∗D(π) =
{

DesA(π) ∪ {0} π(1) + π(2) < 0
DesA(π) otherwise

des∗D(π) = |Des∗D(π)|
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Example
Let π = [−3, 2, 1] ∈ D3. Then:

Des∗D(π) = {0, 2}

since (−3) + 2 < 0; 2 > 1.

Definition
Denote by A∗D(n, k) the number of elements π ∈ Dn satisfying
des∗D(π) = k.
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Set partitions of type D
The poset of intersections of subsets of the hyperplanes of the root
system of type D: { xi = ±xj | 1 ≤ i < j ≤ n } consists of subspaces
which look typically like:

{ x1 = −x3 = x6 = x8 = x9, x5 = −x7, x2 = −x4 = −x2 = x4 }

= { x1 = −x3 = x6 = x8 = x9, x5 = −x7, x2 = x4 = 0 }

Definition
A set partition of [n] of type D is a set partition of [n] of type B with
the additional restriction that the zero block, if presents, contains at least
two pairs.

Example
The set partition of [3] of type B: {{1, 2}, {−1,−2}, {±3}}
is not a set partition of [3] of type D, while {{1}, {−1}, {±2,±3}}
is a set partition of [3] of type D.

13 / 29



Main Theorem 1 for type D

Definition
Denote by S∗D(n, r) the number of set partitions of [n] of type D having
exactly r pairs of non-zero blocks.

Definition

A∗D(n, k) = |{π ∈ Dn | |Des∗D(π)| = k}|

Theorem (B-Biagioli-Garber)

2r r !S∗D(n, r) = n2n−1(r − 1)!Sn−1,r−1 +
r∑

k=0
A∗D(n, k)

(
n − k
r − k

)
where Sn,r is the usual Stirling number of the second kind.
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Part II: Stirling numbers as transfer matrix for falling
polynomials

Theorem (classic)
Let x ∈ R and let n ∈ N. Then:

xn =
n∑

k=0
S(n, k)[x ]k

where [x ]k = x(x − 1) · · · (x − k + 1) is the falling polynomial of
degree k and [x ]0 = 1.

This is actually the original definition of Stirling numbers.
A combinatorial proof, realizing xn as the number of functions from
the set {1, . . . , n} to the set {1, . . . , x}, is presented in Stanley’s
EC1.
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Falling polynomials of type B

Theorem
Let x ∈ R and let n ∈ N. Then we have:

xn =
n∑

k=0
S∗B(n, k)[x ]Bk

where [x ]Bk = (x − 1)(x − 3) · · · (x − 2k + 1) and [x ]B0 = 1.

Bala’s proof uses generating functions techniques.
Remmel and Wachs’s combinatorial proof uses a model of
j−non-attacking rooks.
Our first bijective proof is based on the interpretation of xn as the
number of functions from the set {1, 2, . . . , n} to the set
{1, 2, . . . , x}
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Lattice points in type B
Another bijective proof was proposed to us by Vic Reiner and is based
on counting lattice points: {−m, . . . , 1, 0, 1, . . . ,m}n.

2 3

1

2

3

−1

−2

−3

1−2 −1−3 0

Figure: Lattice points for type B

The L.H.S counts all the lattice points.
The R.H.S counts the same thing according to the maximal
intersection of hyperplanes of type B they lie on.
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Falling polynomials of type D

Definition
Define the falling polynomial of type D:

[x ]Dk = (x − 1)(x − 3) · · · (x − (2k − 1))

for 1 ≤ k < n and [x ]Dn = (x − 1)(x − 3) · · · (x − (2n − 3))(x − (n − 1))
and [x ]D0 = 1

Theorem (B-Biagioli-Garber)
For each n ∈ N :

xn = n([x ]Dn−1 − (x − 1)n−1) +
n∑

k=0
S∗D(n, k)[x ]Dk .
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The proof: Lattice points in type D

2 3

1

2

3

−1

−2

−3

1−2 −1−3 0

Figure: Lattice points for type D

The L.H.S counts all the lattice points.
The R.H.S counts the same thing according to the maximal
intersection of hyperplanes of type D they lie on.
The missing part: n([x ]Dn−1 − (x − 1)n−1) counts the points which
contain exactly one appearance of 0 and at least two non-zero
coordinates are assigned the same absolute value.
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Back to Theorem 1 for type B: Proof’s idea
Recall:
Definition
SB(n, r) denotes the number of set partitions of {1, . . . , n} of type B
having exactly r blocks.

Definition
Denote by AB(n, k) the number of elements π ∈ Bn satisfying
fdes(π) = k − 1.

Theorem (B-Biagioli-Garber)

2b
r
2c
⌊ r

2

⌋
! SB(n, r) =

r∑
k=1

AB(n, k)
(

n −
⌈ k

2
⌉⌊ r−k

2
⌋ )

Proof’s idea:
LHS = Number of ordered set partitions of [n] of type B.
RHS = Weighted sum of numbers of signed permutations classified by
their flag descent.
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From a signed permutation to an ordered set partition of
type B:

Let π ∈ Bn with fdes(π) = k − 1 be written in complete notation:

π =
[

5̄ 4̄ 3̄ 2̄ 1̄ 1 2 3 4 5
5̄ 4 1̄ 2 3̄ 3 2̄ 1 4̄ 5

]
.

Divide the negative part into blocks by putting separators in any place
which is a descent and reflect these separators to the positive part.
In our example:

π =
[

5̄ 4 1̄ 2 3̄ 3 2̄ 1 4̄ 5
]
.
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Perform the following two steps:
1 If exists, move the block B containing the set {π(−1), π(1)} to the

end (zero block).
2 For each block B contained in the negative part of π, locate the

block −B right after it.

Example

π =
[

5̄ 4̄ 3̄ 2̄ 1̄ 1 2 3 4 5
5̄ 4 1̄ 2 3̄ 3 2̄ 1 4̄ 5

]
.

Write the second line with the added separators:

π =
[

5̄ 4 1̄ 2 3̄ 3 2̄ 1 4̄ 5
]
.

The associated ordered set partition of type B of π is:

({5̄, 4}, {4̄, 5}, {1̄, 2}, {2̄, 1}, {3̄, 3}).

If r = k, then we have associated to the signed permutation π an ordered
set partition of type B and we are done.
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If r > k, refine the partition by simultaneously splitting pairs of blocks of
the form B and −B (where B 6= −B), or by splitting a zero-block.

Example

π =
[

5̄ 4̄ 3̄ 2̄ 1̄ 1 2 3 4 5
5̄ 4 1̄ 2 3̄ 3 2̄ 1 4̄ 5

]
.

Write the second line with the added separators:

π =
[

5̄ 4 1̄ 2 3̄ 3 2̄ 1 4̄ 5
]
.

Refinement:

π =
[

5̄
... 4 1̄ 2 3̄ 3 2̄ 1 4̄

... 5
]
.

The associated ordered set partition of type B of π is:

({5̄}, {5}, {4}, {4̄}, {1̄, 2}, {2̄, 1}, {3̄, 3}).
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Proof’s idea of Theorem 1 for type D

Theorem (B-Biagioli-Garber)

2r r !S∗D(n, r) = n2n−1(r − 1)!Sn−1,r−1 +
r∑

k=0
A∗D(n, k)

(
n − k
r − k

)
where Sn,r is the usual Stirling number of the second kind.

Proof’s idea:
Given π ∈ Dn, put a separator in places of descents.
In each place that there is no descent, we decide whether to insert an
artificial separator or not.
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Example

Example
Let π = [3, 7,−1, 2, 4,−6,−5] ∈ D7. After placing the separators
induced by the descents:

π = [3, 7 | −1, 2, 4 | −6,−5].

We add one artificial separator in the following way:

π = [3, 7 | −1
... 2, 4 | −6,−5].

The obtained set partition is:

{{±3,±7}, {−1}, {1}, {2, 4}, {−2,−4}, {−5,−6}, {5, 6}}.
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The problem: We obtain a set partition of type B which is not a set
partition of type D - a zero block having exactly one pair.
When does this happen? If after placing all separators, there exists a
separator between π(1) and π(2), but not before π(1) (as
π(1) + π(2) > 0).
Solution: Toggle the sign of π(1), and then locate the separator which
was been between π(1) and π(2) before π(1), emulating a descent in
position 0 (called switch operation); yielding a permutation
π′ ∈ Bn − Dn, whose blocks form a set partition of type D.
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Example
Let π = [3,−1, 4,−2,−6,−5] ∈ D6. After placing the separators:

π = [3 | −1, 4 | 2 | −6,−5].

3 + (−1) > 0 ⇒ 0 /∈ DesD(π),
so we get a set partition of type B which is not of type D:

{{±3}, {−1, 4}, {1,−4}, {−5,−6}, {5, 6}}.

Switch operation:

π′ = [−3,−1, 4,−2,−6,−5] ∈ B6 − D6.

After placing the separators induced by the descents, we have:

π′ = [ | −3,−1, 4 | −2 | −6,−5] ∈ B6 − D6,

which induces the set partition of type D:

{{−3,−1, 4}, {3, 1,−4}, {−2}, {2}, {−6,−5}, {6, 5}}.
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Definition
Definition: An odd partition is a partition of type D contains an odd
number of negative numbers (induced by π′ ∈ Bn − Dn).

Lemma (Structure of missing odd partitions)
The ordered odd partitions of type D having r blocks which cannot be
obtained from permutations in Dn by a switch operation are exactly of
the form

P ′ = {{∗},P},
where ∗ stands for one element from {±1, . . . ,±n} and P is the blocks
of a usual ordered set partition of the set [n]− {∗} having r − 1 blocks,
such that an odd number of the elements of {1, . . . , n} are signed in P ′.

Lemma (Counting missing odd partitions)
The number of odd partitions which cannot be obtained from
permutations in Dn by a switch operation is:

n2n−1(r − 1)!Sn−1,r−1.
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Thank you!
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