Different tree approaches to the problem of counting numerical semigroups by genus

Maria Bras-Amorós

GASCom 2018Athens, June 19, 2018

Basic notions

Gaps, non-gaps, genus, Frobenius number, conductor, enumeration Generators

Classical problems

Frobenius' coin exchange problem Hurwitz question Wilf's conjecture

Counting

Conjecture

Dyck paths and Catalan bounds

Semigroup tree and Fibonacci bounds

Ordinarization transform and ordinarization tree

Quasi-ordinarization transform and quasi-ordinarization forest

Basic notions

Gaps, non-gaps, genus, Frobenius number, conductor, enumeration Generators

Classical problems

Frobenius' coin exchange problem Hurwitz question Wilf's conjecture

Counting

Conjecture

Dyck paths and Catalan bounds

Semigroup tree and Fibonacci bounds

Ordinarization transform and ordinarization tree

Quasi-ordinarization transform and quasi-ordinarization forest

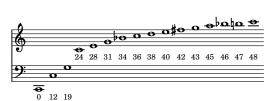
A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

- $ightharpoonup 0 \in \Lambda$
- $ightharpoonup \Lambda + \Lambda \subseteq \Lambda$
- ▶ $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

- $ightharpoonup 0 \in \Lambda$
- $ightharpoonup \Lambda + \Lambda \subseteq \Lambda$
- $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

gaps: $\mathbb{N}_0 \setminus \Lambda$ non-gaps: Λ


The amounts of money one can obtain from a cash point (divided by 10)

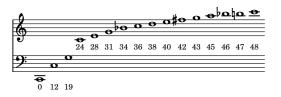
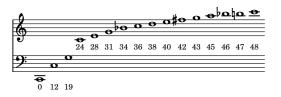


Illustration: Agnès Capella Sala


amount		amount/10
0		0
10	impossible	
20 <i>30</i>	impossible	2
40		4
50	Store 1	5
60		6
70	2 + 2 - 2	7
80		8
90	+ + + + + + + + + + + + + + + + + + + +	9
100	an # + an #	10
110	+ + + + + +	11
÷	:	:

amount		amount/10
0		0
		gap
20	20	2
		gap
40	- +	4
50	53707	5
60	+ - + - + +	6
70	2 + 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	7
80		8
90	p- + v- + v- + v-	9
100	a. 4 + a. 4	10
110	+ + + + + +	11
:	:	:

 $H = \{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, \dots\}$

$$H = \{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, \dots\}$$

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

- $\blacktriangleright \ 0 \in \Lambda$
- $ightharpoonup \Lambda + \Lambda \subseteq \Lambda$
- ▶ $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

gaps: $\mathbb{N}_0 \setminus \Lambda$ non-gaps: Λ

The third condition implies that there exist

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

- $ightharpoonup 0 \in \Lambda$
- $ightharpoonup \Lambda + \Lambda \subseteq \Lambda$
- ▶ $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

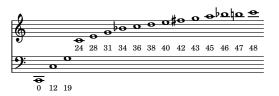
gaps: $\mathbb{N}_0 \setminus \Lambda$ non-gaps: Λ

The third condition implies that there exist

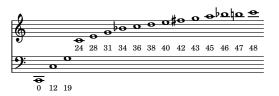
Frobenius number := the largest gap *F*

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

- ▶ 0 ∈ Λ
- $ightharpoonup \Lambda + \Lambda \subseteq \Lambda$
- ▶ $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

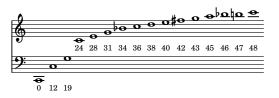

gaps: $\mathbb{N}_0 \setminus \Lambda$ non-gaps: Λ

The third condition implies that there exist


Frobenius number := the largest gap F conductor := the unique integer c with $c-1 \not\in \Lambda$, $c+\mathbb{N}_0 \subseteq \Lambda$ (c=F+1)

amount		amount/10
0		0
20	27-	2
		(3)
40		4
50	Sire Sire	5
60	- 120 + - 20 + - 20 · ·	6
70	a + a - 4	7
80		8
90	+ - +	9
100	a. 4 + a. 4	10
110	+ - + - + - + +	11
i	<u>:</u>	<u>:</u>

amount		amount/10
0		0
20		2
40	+	4
50	Store 1	5
60	+ - + - + +	6
70	2 + 2 - 2	7
80		8
90	» + » + » + » + »	9
100	an 4 + an 4	10
110	+ + + + + +	11
:	:	:



$$H = \{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, \dots\}$$

$$H = \{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, \dots\}$$

- - ▶ g = 33
 - ► *c* = 45

$$H = \{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, \dots\}$$

- - ▶ g = 33
 - ► *c* = 45
 - ► *F* = 44

Enumeration of a numerical semigroup

The inclusion $\Lambda \subseteq \mathbb{N}_0$ implies that there exists

enumeration := the unique bijective increasing map $\lambda:\mathbb{N}_0\to\Lambda$

$$\Lambda = \{\lambda_0 = 0 < \lambda_1 < \lambda_2 \dots \}$$

amount		amount/10	
0		0	λ_0
20		2	λ_1
40		4	λ_2
50	Sim 1	5	λ_3
60	+ + + + + + + + + + + + + + + + + + + +	6	λ_4
70	p + v - 1	7	λ_5
80		8	λ_6
90		9	λ_7
100	an 1 + an 1	10	λ ₈
110	+ + + + + + + + + + + + + + + + + + + +	11	λ_9
:	<u>:</u>	:	:

The generators of a numerical semigroup are those non-gaps which can not be obtained as a sum of two smaller non-gaps.

amount		amount/10
0		0
20		2
40	+	4
50	Store 1	5
60	+ + + + + + + + + + + + + + + + + + + +	6
70	2 + 2 - 2	7
80		8
90	» + » + » + » + »	9
100	an 1 + an 1	10
110	+ + + + + +	11
:	:	:

The generators of a numerical semigroup are those non-gaps which can not be obtained as a sum of two smaller non-gaps.

If a_1, \ldots, a_l are the generators of a semigroup Λ then

$$\Lambda = \{n_1a_1 + \cdots + n_la_l : n_1, \ldots, n_l \in \mathbb{N}_0\}$$

The generators of a numerical semigroup are those non-gaps which can not be obtained as a sum of two smaller non-gaps.

If a_1, \ldots, a_l are the generators of a semigroup Λ then

$$\Lambda = \{ \textit{n}_1 \textit{a}_1 + \dots + \textit{n}_l \textit{a}_l : \textit{n}_1, \dots, \textit{n}_l \in \mathbb{N}_0 \}$$

So, a_1, \ldots, a_l are necessarily coprime.

The generators of a numerical semigroup are those non-gaps which can not be obtained as a sum of two smaller non-gaps.

If a_1, \ldots, a_l are the generators of a semigroup Λ then

$$\Lambda = \{n_1a_1 + \cdots + n_la_l : n_1, \ldots, n_l \in \mathbb{N}_0\}$$

So, a_1, \ldots, a_l are necessarily coprime.

If a_1, \ldots, a_l are coprime we define the semigroup generated by a_1, \ldots, a_l as

$$\langle a_1,\ldots,a_n\rangle:=\{n_1a_1+\cdots+n_la_l:n_1,\ldots,n_l\in\mathbb{N}_0\}.$$

Basic notions

Gaps, non-gaps, genus, Frobenius number, conductor, enumeration Generators

Classical problems

Frobenius' coin exchange problem Hurwitz question Wilf's conjecture

Counting

Conjecture

Dyck paths and Catalan bounds

Semigroup tree and Fibonacci bounds

Ordinarization transform and ordinarization tree

Quasi-ordinarization transform and quasi-ordinarization forest

What is the largest monetary amount that can not be obtained using only coins of specified denominations a_1, \ldots, a_n .

What is the largest monetary amount that can not be obtained using only coins of specified denominations a_1, \ldots, a_n .

If a_1, \ldots, a_n are coprime then the set of amounts that can be obtained is the semigroup $\langle a_1, \ldots, a_n \rangle$ and the question is determining the Frobenius number.

What is the largest monetary amount that can not be obtained using only coins of specified denominations a_1, \ldots, a_n .

If a_1, \ldots, a_n are coprime then the set of amounts that can be obtained is the semigroup $\langle a_1, \ldots, a_n \rangle$ and the question is determining the Frobenius number.

n = 2: Sylvester's formula $a_1 a_2 - a_1 - a_2$.

What is the largest monetary amount that can not be obtained using only coins of specified denominations a_1, \ldots, a_n .

If a_1, \ldots, a_n are coprime then the set of amounts that can be obtained is the semigroup $\langle a_1, \ldots, a_n \rangle$ and the question is determining the Frobenius number.

$$n = 2$$
: Sylvester's formula $a_1 a_2 - a_1 - a_2$.

$$n > 2$$
?

Theorem (Curtis)

There is no finite set of polynomials $\{f_1, \ldots, f_n\}$ such that for each choice of $a_1, a_2, a_3 \in \mathbb{N}$, there is some i such that the Frobenius number of a_1, a_2, a_3 is $f_i(a_1, a_2, a_3)$.

Some refences on Frobenius' coin exchange problem:

J. L. Ramírez Alfonsín. The Diophantine Frobenius problem, volume 30 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2005.

Frank Curtis. On formulas for the Frobenius number of a numerical semi- group. Math. Scand., 67(2):190-192, 1990.

Hurwitz problems

- Determining whether there exist non-Weierstrass numerical semigroups, (Buchweitz gave a positive answer)
- Characterizing Weierstrass semigroups

Some references:

Fernando Torres. On certain N -sheeted coverings of curves and numerical semigroups which cannot be realized as Weierstrass semigroups. Comm. Algebra, 23(11):4211–4228, 1995.

Seon Jeong Kim. Semigroups which are not Weierstrass semigroups. Bull. Korean Math. Soc., 33(2):187–191, 1996.

Jiryo Komeda. Non-Weierstrass numerical semigroups. Semigroup Forum, 57(2):157–185, 1998.

N. Kaplan and L. Ye. The proportion of Weierstrass semigroups, J. Algebra 373:377–391, 2013.

Wilf's conjecture

The number e of generators of a numerical semigroup of genus g and conductor c satisfies

$$e\geqslant rac{c}{c-g}.$$

Wilf's conjecture

The number e of generators of a numerical semigroup of genus g and conductor c satisfies

$$e\geqslant \frac{c}{c-a}$$
.

Example: If c = 2g (symmetric semigroups) then $\frac{c}{c-q} = \frac{2g}{q} = 2$.

Some references:

- H. Wilf. A circle-of-lights algorithm for the money-changing problem, American Mathematical Monthly 85 (1978) 562–565.
- D. E. Dobbs, G. L. Matthews. On a question of Wilf concerning numerical semigroups. International Journal of Commutative Rings, 3(2), 2003.
- A. Zhai. An asymptotic result concerning a question of Wilf Alex Zhai, arXiv:1111.2779.
- A. Sammartano. Numerical semigroups with large embedding dimension satisfy Wilf's conjecture. Semigroup Forum 85 (2012) 439–447.
- N. Kaplan. Counting numerical semigroups by genus and some cases of a question of Wilf, J. Pure Appl. Algebra 216 (2012) 1016–1032.
- A. Moscariello, A. Sammartano. On a conjecture by Wilf about the Frobenius number, Math. Z. 280 (2015) 47–53.
- S. Eliahou. Wilf's conjecture and Macaulay's theorem. arXiv:1703.01761
- M. Delgado, On a question of Eliahou and a conjecture of Wilf. arXiv:1608.01353

Wilf conjecture

For brute approach:

- M. Bras-Amorós. Fibonacci-like behavior of the number of numerical semigroups of a given genus. Semigroup Forum, 76(2):379–384, 2008.
- J. Fromentin, F. Hivert. Exploring the tree of numerical semigroups. Mathematics of Computation 85 (2016), no. 301, 2553–2568.

Basic notions

Gaps, non-gaps, genus, Frobenius number, conductor, enumeration Generators

Classical problems

Frobenius' coin exchange problem Hurwitz question Wilf's conjecture

Counting

Conjecture

Dyck paths and Catalan bounds

Semigroup tree and Fibonacci bounds

Ordinarization transform and ordinarization tree

Quasi-ordinarization transform and quasi-ordinarization forest

Let n_g denote the number of numerical semigroups of genus g.

Let n_g denote the number of numerical semigroups of genus g.

▶ $n_0 = 1$, since the unique numerical semigroup of genus 0 is \mathbb{N}_0

Let n_g denote the number of numerical semigroups of genus g.

- ▶ $n_0 = 1$, since the unique numerical semigroup of genus 0 is \mathbb{N}_0
- $ightharpoonup n_1 = 1$, since the unique numerical semigroup of genus 1 is

Let n_g denote the number of numerical semigroups of genus g.

- ▶ $n_0 = 1$, since the unique numerical semigroup of genus 0 is \mathbb{N}_0
- $ightharpoonup n_1 = 1$, since the unique numerical semigroup of genus 1 is

ho $n_2=2$. Indeed the unique numerical semigroups of genus 2 are

Let n_g denote the number of numerical semigroups of genus g.

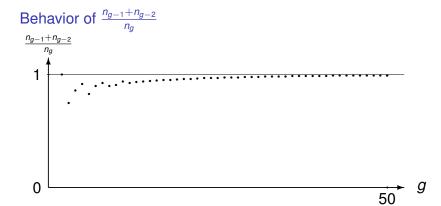
- ▶ $n_0 = 1$, since the unique numerical semigroup of genus 0 is \mathbb{N}_0
- $ightharpoonup n_1 = 1$, since the unique numerical semigroup of genus 1 is

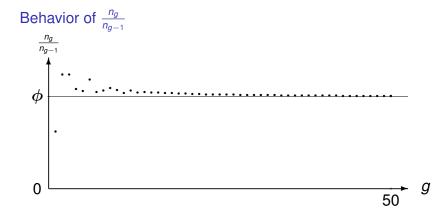
ho $n_2=2$. Indeed the unique numerical semigroups of genus 2 are

- $n_3 = 4$
- ► $n_4 = 7$
- $n_5 = 12$
- $n_6 = 23$
- $n_7 = 39$
- $n_8 = 67$

:

Conjecture


[Bras-Amorós, 2008]


1.
$$n_g \geqslant n_{g-1} + n_{g-2}$$

$$2. \qquad \blacktriangleright \quad \lim_{g \to \infty} \frac{n_{g-1} + n_{g-2}}{n_g} = 1$$

$$\lim_{g \to \infty} \frac{n_g}{n_{g-1}} = \phi$$

g	n _q	$n_{q-1} + n_{q-2}$	$\frac{n_{g-1}+n_{g-2}}{n_g}$	$\frac{n_g}{n_{g-1}}$
0	1			
1	1			1
2	2	2	1	2
3	4	3	0.75	2
4	7	6	0.857143	1.75
5	12	11	0.916667	1.71429
6	23	19	0.826087	1.91667
7	39	35	0.897436	1.69565
8	67	62	0.925373	1.71795
9	118	106	0.898305	1.76119
10	204	185	0.906863	1.72881
11	343	322	0.938776	1.68137
12	592	547	0.923986	1.72595
13	1001	935	0.934066	1.69088
14	1693	1593	0.940933	1.69131
15	2857	2694	0.942947	1.68754
16	4806	4550	0.946733	1.68218
17	8045	7663	0.952517	1.67395
18	13467	12851	0.954259	1.67396
19	22464	21512	0.957621	1.66808
20	37396	35931	0.960825	1.66471
21	62194	59860	0.962472	1.66312
22	103246	99590	0.964589	1.66006
23	170963	165440	0.967695	1.65588
24	282828	274209	0.969526	1.65432
25	467224	453791	0.971249	1.65197
26	770832	750052	0.973042	1.64981
27	1270267	1238056	0.974642	1.64792
28	2091030	2041099	0.976121	1.64613
29	3437839	3361297	0.977735	1.64409
30	5646773	5528869	0.979120	1.64254
31	9266788	9084612	0.980341	1.64108
32	15195070	14913561	0.981474	1.63973
33	24896206	24461858	0.982554	1.63844
34	40761087	40091276	0.983567	1.63724
35	66687201	65657293	0.984556	1.63605
36	109032500	107448288	0.985470	1.63498
37	178158289	175719701	0.986312	1.63399
38	290939807	287190789	0.987114	1.63304
39	474851445	469098096	0.987884	1.63213
40	774614284	765791252	0.988610	1.63128

What is known

ightharpoonup Upper and lower bounds for n_g Dyck paths and Catalan bounds (w. de Mier), semigroup tree and Fibonacci bounds, Elizalde's improvements, and others

What is known

- ightharpoonup Upper and lower bounds for n_g Dyck paths and Catalan bounds (w. de Mier), semigroup tree and Fibonacci bounds, Elizalde's improvements, and others
- ▶ $\lim_{g\to\infty}\frac{n_g}{n_{g-1}}=\phi$ Alex Zhai (2013) with important contributions of Nathan Kaplan, Yufei Zhao, and others

What is known

- ightharpoonup Upper and lower bounds for n_g Dyck paths and Catalan bounds (w. de Mier), semigroup tree and Fibonacci bounds, Elizalde's improvements, and others
- ▶ $\lim_{g\to\infty} \frac{n_g}{n_{g-1}} = \phi$ Alex Zhai (2013) with important contributions of Nathan Kaplan, Yufei Zhao, and others

Weaker unsolved conjecture

 $ightharpoonup n_g$ is increasing

Basic notions

Gaps, non-gaps, genus, Frobenius number, conductor, enumeration Generators

Classical problems

Frobenius' coin exchange problem Hurwitz question Wilf's conjecture

Counting

Conjecture

Dyck paths and Catalan bounds

Semigroup tree and Fibonacci bounds
Ordinarization transform and ordinarization tree
Quasi-ordinarization transform and quasi-ordinarization forest

A Dyck path of order n is a staircase walk from (0,0) to (n,n) that lies over the diagonal x=y.


A Dyck path of order n is a staircase walk from (0,0) to (n,n) that lies over the diagonal x=y.

Example

A Dyck path of order n is a staircase walk from (0,0) to (n,n) that lies over the diagonal x=y.

Example

The number of Dyck paths of order *n* is given by the Catalan number

$$C_n=\frac{1}{n+1}\binom{2n}{n}.$$

Definition

The square diagram of a numerical semigroup is the path

$$e(i) = \left\{ \begin{array}{ll} \rightarrow & \text{if } i \in \Lambda, \\ \uparrow & \text{if } i \notin \Lambda, \end{array} \right. \qquad \text{for } 1 \leqslant i \leqslant 2g.$$

Definition

The square diagram of a numerical semigroup is the path

$$e(i) = \left\{ \begin{array}{ll} \rightarrow & \text{if } i \in \Lambda, \\ \uparrow & \text{if } i \notin \Lambda, \end{array} \right. \quad \text{for } 1 \leqslant i \leqslant 2g.$$

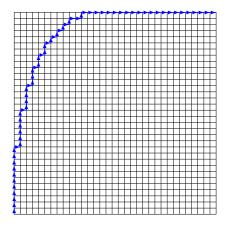
It always goes from (0,0) to (g,g).

Definition

The square diagram of a numerical semigroup is the path

$$e(i) = \left\{ egin{array}{ll}
ightarrow & ext{if } i \in \Lambda, \
ightarrow & ext{if } i
otin \Lambda, \end{array}
ight. \qquad ext{for } 1 \leqslant i \leqslant 2g.$$

It always goes from (0,0) to (g,g).


Example

Example

Lemma

[Bras-Amorós, de Mier, 2007]

The square diagram of a numerical semigroup is a Dyck path.

Lemma

[Bras-Amorós, de Mier, 2007]

The square diagram of a numerical semigroup is a Dyck path.

Corollary

$$n_g \leqslant C_g = \frac{1}{g+1} \binom{2g}{g}$$
.

Basic notions

Gaps, non-gaps, genus, Frobenius number, conductor, enumeration Generators

Classical problems

Frobenius' coin exchange problem Hurwitz question Wilf's conjecture

Counting

Conjecture

Dyck paths and Catalan bounds

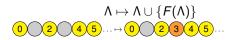
Semigroup tree and Fibonacci bounds

Ordinarization transform and ordinarization tree

Quasi-ordinarization transform and quasi-ordinarization forest

Tree \Im of numerical semigroups

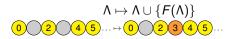
From genus g to genus g-1

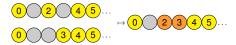

A semigroup of genus g together with its Frobenius number is another semigroup of genus g-1.

$$\Lambda \mapsto \Lambda \cup \{F(\Lambda)\}$$

Tree \Im of numerical semigroups

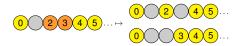
From genus g to genus g-1

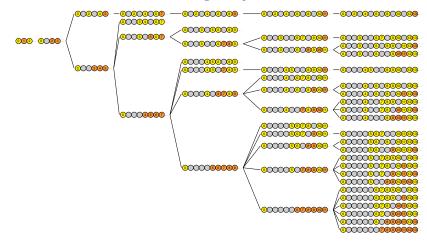

A semigroup of genus g together with its Frobenius number is another semigroup of genus g-1.


Tree $\mathfrak T$ of numerical semigroups

From genus g to genus g-1

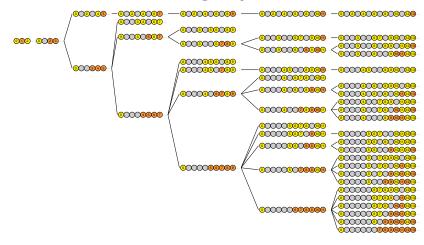
A semigroup of genus g together with its Frobenius number is another semigroup of genus g-1.


A set of semigroups may give the same semigroup when adjoining their Frobenius numbers.


Tree \Im of numerical semigroups

From genus g-1 to genus g

All semigroups giving Λ when adjoining to them their Frobenius number can be obtained from Λ by taking out one by one all generators of Λ larger than its Frobenius number.



Tree T of numerical semigroups

The parent of a semigroup Λ is Λ together with its Frobenius number.

Tree T of numerical semigroups

The parent of a semigroup Λ is Λ together with its Frobenius number.

The descendants of a semigroup are obtained taking away one by one all generators larger than its Frobenius number.

Tree T of numerical semigroups

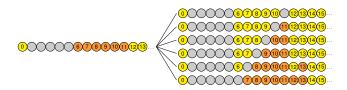
A numerical semigroup is ordinary if all its gaps are consecutive.

Tree $\ensuremath{\mathfrak{T}}$ of numerical semigroups

Descendants of ordinary semigroups

Lemma

The ordinary semigroup of genus g has g+1 descendants which in turn have $0,1,2,\ldots,g-2,\ g,\ g+2$ descendants.


Tree $\ensuremath{\mathfrak{T}}$ of numerical semigroups

Descendants of ordinary semigroups

Lemma

The ordinary semigroup of genus g has g+1 descendants which in turn have $0,1,2,\ldots,g-2,\ g,\ g+2$ descendants.

Example

Tree \Im of numerical semigroups

Descendants of non-ordinary semigroups

Lemma

If the generators of Λ (non-ordinary) that are larger than its Frobenius number are $\{\lambda_{i_1} < \lambda_{i_2} < \cdots < \lambda_{i_k}\}$, then the generators of $\Lambda \setminus \{\lambda_{i_j}\}$ that are larger than its Frobenius number are

$$\{\lambda_{i_{j+1}} < \cdots < \lambda_{i_k}\},\$$

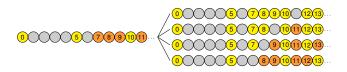
or

$$\{\lambda_{i_{j+1}} < \cdots < \lambda_{i_k}\} \cup \{\lambda_1 + \lambda_{i_j}\}$$

Tree \Im of numerical semigroups

Descendants of non-ordinary semigroups

Lemma


If the generators of Λ (non-ordinary) that are larger than its Frobenius number are $\{\lambda_{i_1} < \lambda_{i_2} < \cdots < \lambda_{i_k}\}$, then the generators of $\Lambda \setminus \{\lambda_{i_j}\}$ that are larger than its Frobenius number are

$$\{\lambda_{i_{j+1}} < \cdots < \lambda_{i_k}\},\$$

or

$$\{\lambda_{i_{j+1}} < \cdots < \lambda_{i_k}\} \cup \{\lambda_1 + \lambda_{i_j}\}$$

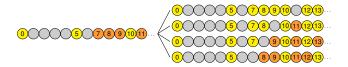
Example

Tree $\mathfrak T$ of numerical semigroups

Corollary

If a non-ordinary node in the semigroup tree has k descendants, then its descendants have

- ▶ at least 0, ..., k-1 descendants, respectively,
- ▶ at most 1,...,k descendants, respectively.


Tree $\mathfrak T$ of numerical semigroups

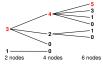
Corollary

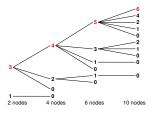
If a non-ordinary node in the semigroup tree has k descendants, then its descendants have

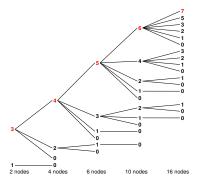
- ightharpoonup at least $0, \ldots, k-1$ descendants, respectively,
- ▶ at most 1,..., k descendants, respectively.

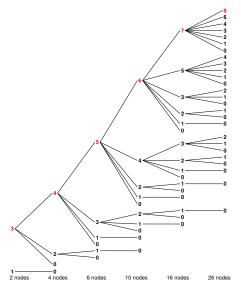
Example

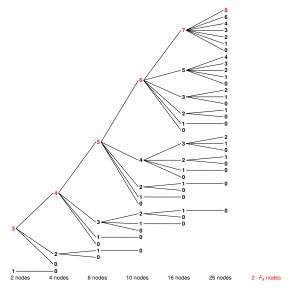
Number of descendants of semigroups of genus 2 $\,$




Lower bound for the number of descendants of semigroups of genus $\ensuremath{\mathbf{3}}$


Lower bound for the number of descendants of semigroups of genus 4


Lower bound for the number of descendants of semigroups of genus ${\bf 5}$


Lower bound for the number of descendants of semigroups of genus 6

Lower bound for the number of descendants of semigroups of genus $7\,$

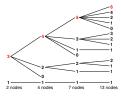
Lower bound for the number of descendants of semigroups of genus g

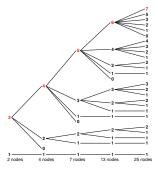
Lemma

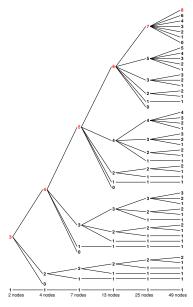
For $g \geqslant 3$,

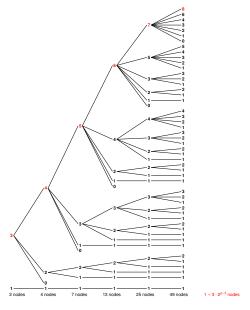
$$2F_g \leqslant n_g$$

Number of descendants of semigroups of genus 2


Upper bound for the number of descendants of semigroups of genus ${\bf 3}$


Upper bound for the number of descendants of semigroups of genus ${\bf 4}$


Upper bound for the number of descendants of semigroups of genus $\ensuremath{\mathbf{5}}$


Upper bound for the number of descendants of semigroups of genus $\boldsymbol{6}$

Upper bound for the number of descendants of semigroups of genus $7\,$

Upper bound for the number of descendants of semigroups of genus \boldsymbol{g}

Lemma

For $g \geqslant 3$,

$$2F_g\leqslant n_g\leqslant 1+3\cdot 2^{g-3}.$$

Bounds on n_g

			4 . 0 . 07 - 3	
g	2F _g	ng	$1+3\cdot 2^{g-3}$	C _g
0		1		1
1		1		1
2	2	2		2
3	4	4	4	5
4	6	7	7	14
5	10	12	13	42
6	16	23	25	132
7	26	39	49	429
8	42	67	97	1430
9	68	118	193	4862
10	110	204	385	16796
11	178	343	769	58786
12	288	592	1537	208012
13	466	1001	3073	742900
14	754	1693	6145	2674440
15	1220	2857	12289	9694845
16	1974	4806	24577	35357670
17	3194	8045	49153	129644790
18	5168	13467	98305	477638700
19	8362	22464	196609	1767263190
20	13530	37396	393217	6564120420
21	21892	62194	786433	24466267020
22	35422	103246	1572865	91482563640
23	57314	170963	3145729	343059613650
24	92736	282828	6291457	1289904147324
25	150050	467224	12582913	4861946401452
26	242786	770832	25165825	18367353072152
27	392836	1270267	50331649	69533550916004
28	635622	2091030	100663297	263747951750360
29	1028458	3437839	201326593	1002242216651368
30	1664080	5646773	402653185	3814986502092304

Basic notions

Gaps, non-gaps, genus, Frobenius number, conductor, enumeration Generators

Classical problems

Frobenius' coin exchange problem Hurwitz question Wilf's conjecture

Counting

Dyck paths and Catalan bounds

Semigroup tree and Fibonacci bound

Ordinarization transform and ordinarization tree

Quasi-ordinarization transform and quasi-ordinarization forest

Ordinary numerical semigroups

The multiplicity of a numerical semigroup is its smallest non-zero nongap.

Ordinary numerical semigroups

The multiplicity of a numerical semigroup is its smallest non-zero nongap.

A non-trivial numerical semigroup is ordinary if m=F + 1.

- Remove the multiplicity
- Add the Frobenius number

- Remove the multiplicity
- Add the Frobenius number

- Remove the multiplicity
- Add the Frobenius number

- Remove the multiplicity
- Add the Frobenius number

Ordinarization transform of a semigroup:

- Remove the multiplicity
- Add the Frobenius number

► The result is another numerical semigroup.

- Remove the multiplicity
- Add the Frobenius number

- The result is another numerical semigroup.
- ▶ The genus is kept constant in all the transforms.

- Remove the multiplicity
- Add the Frobenius number

- The result is another numerical semigroup.
- ▶ The genus is kept constant in all the transforms.
- Repeating several times (:= ordinarization number) we obtain an ordinary semigroup.

Tree \mathfrak{T}_g of numerical semigroups of genus g

The tree \mathfrak{T}_q

Define a graph with

- nodes corresponding to semigroups of genus g
- edges connecting each semigroup to its ordinarization transform

$$o(\Lambda) - \Lambda$$

Tree \mathbb{T}_g of numerical semigroups of genus g

The tree \mathfrak{T}_q

Define a graph with

- nodes corresponding to semigroups of genus g
- edges connecting each semigroup to its ordinarization transform

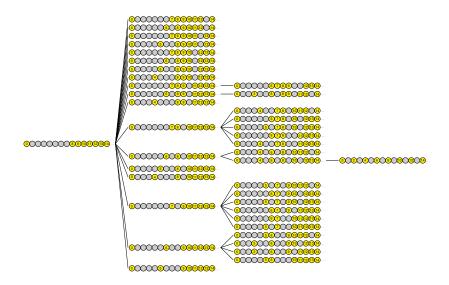
$$o(\Lambda) - \Lambda$$

 \mathcal{T}_g is a tree rooted at the unique ordinary semigroup of genus g.

Tree \mathfrak{T}_g of numerical semigroups of genus g

The tree \mathfrak{T}_q

Define a graph with


- nodes corresponding to semigroups of genus g
- edges connecting each semigroup to its ordinarization transform

$$o(\Lambda) - \Lambda$$

 \mathcal{T}_g is a tree rooted at the unique ordinary semigroup of genus g.

Contrary to \mathcal{T} , \mathcal{T}_g has only a finite number of nodes (indeed, n_g).

Tree \mathfrak{T}_g of numerical semigroups of genus g

 \mathfrak{T}_g and \mathfrak{T}

Lemma

If Λ_1 is a descendant of Λ_2 in $\mathfrak T$ then $o(\Lambda_1)$ is a descendant of $o(\Lambda_2)$ in $\mathfrak T$.

Lemma

If Λ_1 and Λ_2 are siblings in ${\mathbb T}$ then they are siblings in ${\mathbb T}_g$.

Tree \mathfrak{T}_g of numerical semigroups of genus g

The depth of a semigroup of genus g in \mathcal{T}_q is its ordinarization number.

Tree \mathfrak{T}_g of numerical semigroups of genus g

The depth of a semigroup of genus g in \mathcal{T}_g is its ordinarization number.

Lemma

- 1. The ordinarization number of a numerical semigroup of genus g is the number of its non-zero non-gaps which are $\leq g$.
- 2. The maximum ordinarization number of a semigroup of genus g is $\lfloor \frac{g}{2} \rfloor$.
- 3. The unique numerical semigroup of genus g and ordinarization number $\lfloor \frac{g}{2} \rfloor$ is $\{0, 2, 4, \dots, 2g, 2g+1, 2g+2, \dots\}$.

Conjecture

 $n_{g,r}$: number of semigroups of genus g and ordinarization number r.

Conjecture

- ► $n_{g,r} \leqslant n_{g+1,r}$
- ▶ Equivalently, the number of semigroups in \mathcal{T}_g at a given depth is at most the number of semigroups in \mathcal{T}_{g+1} at the same depth.

Conjecture

 $n_{g,r}$: number of semigroups of genus g and ordinarization number r.

Conjecture

- ► $n_{g,r} \leq n_{g+1,r}$
- ▶ Equivalently, the number of semigroups in \mathcal{T}_g at a given depth is at most the number of semigroups in \mathcal{T}_{g+1} at the same depth.

This conjecture would prove $n_g \leqslant n_{g+1}$.

Conjecture

 $n_{g,r}$: number of semigroups of genus g and ordinarization number r.

Conjecture

- ► $n_{g,r} \leq n_{g+1,r}$
- ▶ Equivalently, the number of semigroups in \mathcal{T}_g at a given depth is at most the number of semigroups in \mathcal{T}_{g+1} at the same depth.

This conjecture would prove $n_g \leqslant n_{g+1}$.

This result is proved for the lowest and largest depths.

Computational evidence

Col.	
The color of the	3804 8 20152 9 27493 9633 889 47 7 2 1 36 g=37 7 513
The color of the	3 20152 0 27493 9633 889 47 7 2 1 36 g=37 7 513
Fig.	27493 9633 889 47 7 2 1 36 g=37 7 513
Total Tota	9633 889 47 7 2 1 1 36 g=37 7 513
1 1 2 2 7 9 45 89 7 7 2 1 1 1 2 2 7 7 9 45 89 7 7 2 2 7 7 2 2 7 7	889 47 7 2 1 36 g=37 7 513
Total Tota	47 7 2 1 36 g=37 7 513
Total 1	7 2 1 36 9=37 1 7 513
Total Tota	2 1 36 g=37 7 513
1	1 36 g=37 1 7 513
Total Tota	7 513
Total Tota	7 513
1-22 1-22	
No. Control Control	39 43538
March Tend	
15 15 15 15 15 15 15 15	285 1114817
The color	784 10392180
1.7 1.7	38853706
18 18 18 18 18 18 18 18	
10	
No. No.	
	319 318308
	3 14332
1 2 2 7 7 23 23 24 25 25 27 7 23 25 25 25 25 25 25 25	9 759
1	0 200
1	68
1 1 1 1 1 1 1 1 1 1	
1-12 1-12	
Page	2
1 1 1 1 1 1 1 1 1 1	
1-22 2750 590 607 651 690 775 779 782 828 829 782 78	g=49
12 12 12 12 12 12 12 12	900
150 150	141164
14 130-051 1722792 161-6641 200-0199 34450508 441-4239 3565089 6778-897 81530506 0200-9409 121-4243 165508 165	7256830
ne 8898622 \$15016400 \$20001607 \$207997601 \$27799601 \$11446802 \$161421267 \$227996611 \$42299614 \$4798760 \$26799600 \$26799760 \$27799601 \$1144600 \$161421267 \$22799611 \$26799600 \$26799760 \$26799600 \$26799760 \$2679	150477267
67 816/2546 14/80/75791 41/80/8501 64/84/3703 64/84/3703 17/30/8502 71/30/8502 41/80/8501 68/86/2509 68/86/3502 68/86/3502 64/84/3503 64/84/3502 71/77/2570 18/30/8502 64/85/2502 18/85/2502 64/85/2502 18/85/2502	
AB 2005/2004 C5838570 D68089442 22654163 Medius D2 277742720 D8171586 277854842 466060000 674822075 1522275 15254540 466060000 674822075 1522275 1522276 15254540 466060000 674822075 1522275 1522276 15254540 466060000 674822075 1522275 1522276 1522276 1522276 1522276 1522276 1522277 1522277 1522276 1522276 1522277 1522277 1522276 1522276 1522277 2672276 1522276 1522277 2672276 1522276 1522277	
167 167	14462411903
n10 9890077 2383461 6101724 14810797 34897272 9719199002 779189573 373545010 782289551 198487022 371116822 n12 5257 5562 21994 77918 252707 8003934 2428928 7228215 20114114 53281902 19131150 n13 616 649 1925 2679 9947 27422 107780 361575 124577 3944509 30294	
n-11 51663 164512 519339 1509557 4237829 11221683 28679326 70097864 166082233 379419480 94833424 n-12 2527 5652 21994 71261 222707 800934 2422982 722612 20114114 \$3281902 13613150 n-13 616 649 1925 2679 9947 27432 106780 361575 1245778 3945699 1203324 12 20	
r=12 2527 5652 21994 71261 252707 803934 2492982 7226212 20114114 53281902 13613150 r=13 616 649 1925 2679 9947 27432 106780 361575 1245778 3945659 12053243	
r=13 616 649 1925 2679 9947 27432 106780 361575 1245778 3945659 1205324:	1824208237
2-14 200 200 E1E E17 1000 1020 E144 11120 40014 440400 E77404	1824208237 334153690
r=15 68 68 200 200 615 615 1766 1804 5254 6320 22087	334153690
r=16 23 23 68 68 200 200 615 615 1764 1765 5102	334153690 34718395 1835716 52194
r=17 7 7 23 23 68 68 200 200 615 615 1764	334153690 34718395 1835716 52194 5278
n=18 2 2 7 7 23 23 68 68 200 200 615 n=19 1 1 2 2 7 7 23 23 68 68 68 200	334153690 34718395 1835716 52194 5278 1764
r=19	334153690 34718395 1835716 52194 5278 1764 615
1 2 2 7 7 7 23	334153690 34718395 1835716 52194 5278 1764 615 200
1 1 2 2 7	334153690 34718395 1835716 52194 5278 1764 615 200 68
1 1 2	334153690 34718395 1835716 52194 5278 1764 615 200 68 23
1 1	334153690 34718395 1835716 52194 5278 1764 615 200 68

Lemma (Bernardini and Torres (2017))

The sequence f_{γ} given by

```
\begin{array}{rclrcl} f_0 & = & 1, \\ f_1 & = & 2, \\ f_2 & = & 7, \\ f_3 & = & 23, \\ f_4 & = & 68, \\ f_5 & = & 200, \\ f_6 & = & 615, \\ f_7 & = & 1764, \\ f_8 & = & 5060, \\ f_9 & = & 14626, \\ \end{array}
```

also counts the number of semigroups of genus 3γ and γ even gaps.

Conjecture (Bernardini, Torres)

$$f_{\gamma} \sim \varphi^{2\gamma}$$

Basic notions

Gaps, non-gaps, genus, Frobenius number, conductor, enumeration Generators

Classical problems

Frobenius' coin exchange problem Hurwitz question Wilf's conjecture

Counting

Conjecture

Dyck paths and Catalan bounds

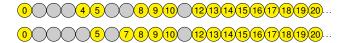
Semigroup tree and Fibonacci bounds

Ordinarization transform and ordinarization tree

Quasi-ordinarization transform and quasi-ordinarization forest

Quasi-ordinary numerical semigroups

A non-ordinary semigroup Λ is a quasi-ordinary semigroup if $\Lambda \cup F$ is ordinary.



- Remove the multiplicity
- Add the second largest gap

- Remove the multiplicity
- Add the second largest gap

- Remove the multiplicity
- Add the second largest gap

- Remove the multiplicity
- Add the second largest gap

Quasi-ordinarization transform of a non-ordinary semigroup:

- Remove the multiplicity
- Add the second largest gap

► The result is another numerical semigroup.

- Remove the multiplicity
- Add the second largest gap

- The result is another numerical semigroup.
- ► The genus is kept constant in all the transforms.

- Remove the multiplicity
- Add the second largest gap

- The result is another numerical semigroup.
- The genus is kept constant in all the transforms.
- Repeating several times (:= quasi-ordinarization number) we obtain a quasi-ordinary semigroup.

Quasi-ordinarization transform of a non-ordinary semigroup:

- Remove the multiplicity
- Add the second largest gap

- The result is another numerical semigroup.
- The genus is kept constant in all the transforms.
- Repeating several times (:= quasi-ordinarization number) we obtain a quasi-ordinary semigroup.

Quasi-ordinarization transform of an ordinary semigroup is defined to be itself.

The forest \mathcal{F}_g

Define a graph with

- nodes corresponding to semigroups of genus g
- edges connecting each semigroup to its quasi-ordinarization transform

$$q(\Lambda) - \Lambda$$

The forest \mathcal{F}_g

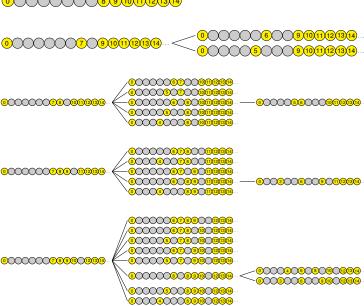
Define a graph with

- nodes corresponding to semigroups of genus g
- edges connecting each semigroup to its quasi-ordinarization transform

$$q(\Lambda) - \Lambda$$

 \mathcal{F}_g is a forest with roots at the quasi-ordinary semigroups of genus g, and the unique ordinary semigroup of genus g.

The forest \mathcal{F}_g


Define a graph with

- nodes corresponding to semigroups of genus g
- edges connecting each semigroup to its quasi-ordinarization transform

$$q(\Lambda) - \Lambda$$

 \mathcal{F}_g is a forest with roots at the quasi-ordinary semigroups of genus g, and the unique ordinary semigroup of genus g.

Contrary to \mathfrak{T}_g , \mathfrak{F}_g is a forest.

\mathcal{F}_g and \mathfrak{T}

Lemma

If Λ_1 is descendant of Λ_2 in $\mathbb T$ then $q(\Lambda_1)$ is a niece/nephew of $q(\Lambda_2)$ in $\mathbb T$.

Lemma

If Λ_1 and Λ_2 are siblings in $\mathbb T$ then they are siblings in $\mathbb T_g$ but not in $\mathbb F_g$.

Lemma

If Λ_1 and Λ_2 are siblings in \mathfrak{T}_g then $q(\Lambda_1)$ and $q(\Lambda_2)$ are siblings in \mathfrak{T} .

Lemma

If Λ_1 and Λ_2 are siblings in $\mathbb T$ then $q(\Lambda_1)$ and $q(\Lambda_2)$ are siblings in $\mathbb T$.

Further contributions on counting

Maria Bras-Amoróos and Anna de Mier. Representation of numerical semigroups by Dyck paths. Semigroup Forum, 75(3):677-682, 2007.

Maria Bras-Amorós. Fibonacci-like behavior of the number of numerical semigroups of a given genus. Semigroup Forum, 76(2):379-384, 2008.

Maria Bras-Amorós. Bounds on the number of numerical semigroups of a given genus. J. Pure Appl. Algebra, 213(6):997-1001, 2009.

Maria Bras-Amorós and Stanislav Bulygin. Towards a better understanding of the semigroup tree. Semigroup Forum, 79(3):561-574, 2009.

Sergi Elizalde. Improved bounds on the number of numerical semigroups of a given genus. Journal of Pure and Applied Algebra, 214:1404-1409, 2010.

Yufei Zhao. Constructing numerical semigroups of a given genus. Semigroup Forum, 80(2):242-254, 2010.

Víctor Blanco, Pedro A. García-Sánchez, and Justo Puerto. Counting numerical semigroups with short generating functions, Internat. J. Algebra Comput. 21:1217–1235, 2011.

Nathan Kaplan. Counting numerical semigroups by genus and some cases of a question of Wilf, J. Pure Appl. Algebra 216: 1016–1032, 2012.

Maria Bras-Amorós. The ordinarization transform of a numerical semigroup and semigroups with a large number of intervals, J. Pure Appl. Algebra 216:2507–2518, 2012.

Evan O'Dorney. Degree asymptotics of the numerical semigroup tree, Semigroup Forum 87:601–616, 2013.

Matheus Bernardini and Fernando Torres. Counting numerical semigroups by genus and even gaps, Discrete Mathematics 340 (12):2853-2863, 2017.

Nathan Kaplan. Counting numerical semigroups, Amer. Math. Monthly 124: 862-875, 2017.